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Abstract

In the orienteering problem, start and end points are specified along with other locations which have associated
scores. Given a fixed amount of time, the goal is to determine a path from the start point to the end point through a
subset of locations in order to maximize the total path score. In this paper, a fast and extremely effective heuristic is
presented and tested on 67 problems taken from the literature and 40 new test problems. The computational results

are presented in detail.
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1. Introduction

Orienteering is an outdoor sport usually played
in a mountainous or heavily forested area. Armed
with compass and map, competitors start at a
specified control point, try to visit as many other
control points as possible within a prescribed
time limit, and return to a specified control point.
Each control point has an associated score, so
that the objective of orienteering is to maximize
the total score. Competitors who arrive at the
finish point after time has expired are disquali-
fied, and the eligible competitor with the highest
score is declared the winner. Since time is lim-
ited, competitors may not be able to visit all
control points. The competitors have to select a

* Corresponding author. E-mail: bgolden@umdacc.umd.edu

subset of control points to visit that will maximize
their total score subject to the time restriction.

The Orienteering Problem (OP) can be mod-
eled as a multi-level optimization problem. At the
first level, we need to choose a subset of control
points to visit. At the second level, we need to
solve a Traveling Salesman Problem (TSP) or a
shortest Hamiltonian path problem over the se-
lected subset of control points. We can think of
this as a generalized TSP since competitors may
start and finish at different locations. The two
levels of this problem are closely related. If the
path obtained from solving the second-level TSP
is not feasible, then we need to remove some
points from the selected subset of points. If the
path is feasible, then, in order to maximize the
total score, we may need to add points that were
not selected at the first level.

We now describe a network optimization for-
mulation of the OP. Let V' be the set of control
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points (vertices) and E be the set of edges be-
tween points in V. Then G = {V, E} is a complete
graph. Each point i in V' has a score s;2>0
associated with it. The starting point is vertex 1
and the last point is vertex »n, and each of these
points has a score of zero. Each edge in E has a
symmetric, nonnegative cost c;; associated with it,
where c;; is the distance between point i and
point j, or c;; is the cost of traveling between the
two points. For the OP, we need to find a path
that starts at point 1 and finishes at point »n such
that the score amassed from the visited control
points is maximized. Each control point can be
visited at most once and the total time taken to
visit control points cannot exceed the specified
limit 7, ..

We point out that the OP is a variant of the
well-known TSP. Suppose that a salesman wants
to visit a set of cities in which the starting city and
ending city are not the same. Furthermore, sup-
pose that the time available for visiting the cities
is limited. All of the cities cannot be visited in the
allotted time, so the salesman must select a sub-
set of cities to visit in order to maximize profit (or
total score) without violating the time restriction.
The TSP is a special case where T,,,,. is very large
and the start and end locations coincide.

The OP can be used to model many practical
problems. Golden, Assad, and Dahl (1984) use
the OP in the solution of a subset selection
subproblem for a large inventory/routing prob-
lem. In particular, they model the delivery of
home heating fuel as an OP. The urgency of a
customer’s request for fuel is treated as a score
and the distribution manager must select a subset
of customers to service each day. Keller (1989)
treats the OP as a special case of the multi-objec-
tive vending problem in which the decision maker
must trade off maximizing reward potential by
visiting as many points as possible and minimizing
travel cost by visiting as few points as possible.
Balas (1989) presents another variant of the OP
that is known as the Prize Collecting TSP. The
objective is to minimize total travel cost and the
net penalties for failing to visit some points, while
visiting enough points to collect a prescribed
amount of prize money. Mittenthal and Noon
(1992) and Pillai (1992) examine a specific exam-

ple of the Traveling Salesman Subset-Tour Prob-
lem in which an additional constraint (such as a
maximum time constraint) has been included (this
problem is denoted by TSSP + 1). Kantor and
Rosenwein (1992) add time windows to the OP,
so that a point can only be visited within a certain
time interval. This version of the OP has poten-
tial applications to problems found in bank and
postal delivery, industrial refuse collection, dial-
a-ride services, and school bus routing. We point
out that the OP has been shown to be NP-hard
by Golden, Levy, and Vohra (1987).

In the next section, we describe the various
solution approaches to the OP that have ap-
peared in the OR literature. In the third section,
we develop a new heuristic for solving the OP
(without time windows). In the fourth section, we
present computational results for 67 test prob-
lems taken from the literature and for 40 new
problems that we generated. In the last section,
we present some conclusions.

2. Review of solution approaches to the OP

Most of the research into solution methods for
the OP has occurred over the last 10 years or so.
Tsiligirides (1984) develops two heuristic ap-
proaches for solving the OP. The first approach is
a stochastic method that uses a Monte Carlo
technique for generating a large number of solu-
tions. For each point i that is not yet included on
the current path, Tsiligirides assigns a desirability
measure denoted by A,. The desirability measure
is given by

Ai = (si/ci,last)4’ (1)

where s; is the score associated with point i and
C; las i8 the distance from the last point on the
current path to point i. The four points with the
largest desirability measures are identified and
their measures normalized according to

A,
P =

= ———, fori=1234. (2)
=14,

Point i is randomly selected with probability P, as
the new last point on the current path. Points
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continue to be placed on the current path until
the remaining time is so small that no points can
be feasibly inserted onto the path. Three thou-
sand solutions are generated in this way and the
solution with the highest score is selected as the
final solution.

The second solution approach developed by
Tsiligirides is based upon a vehicle routing proce-
dure due to Wren and Holliday (1972). This ap-
proach divides the geographic area into sectors
that are determined by two concentric circles and
an arc of specified length. Routes are built up
within each sector in an effort to minimize the
total distance traveled. Sectors are changed by
varying the two radii of the circles and by rotating
the arc. For each problem, Tsiligirides examines
48 cases and selects the solution with the highest
score as the final solution.

We point out that, with both heuristics, Tsili-
girides improves the final solution by applying a
three-step post processor. In the first step, a
2-opt heuristic is applied to reduce the length of
the path found previously. Next, Tsiligirides tries
to insert new points onto this path. Finally, he
tries to increase the total score, while preserving
feasibility, by removing a point on the current
path and inserting a new point not on the path.

Golden, Levy, and Vohra (1987) develop a
procedure for solving the OP that consists of
three steps: path construction, path improvement,
and center of gravity improvement. In the first
step, a ‘bang for buck’ insertion heuristic is used
to construct a path. Each point i is assigned a
weighted measure given by

Wi=as5;+b-C,+c-E, 3)

where a +b+c=1, s; is the score associated
with point i, E; is the summation of distances
from point i to the start and finish points, and C;
is the distance from point i/ to the center of
gravity. In the second step, Golden, Levy, and
Vohra apply a 2-opt heuristic to improve the
current solution. They try to exchange a point on
the path with a point not on the path in the hope
of decreasing the current path’s length. In the
third step, a new center of gravity is computed,
and the three steps are repeated until a path that

is identical to the previous one is produced. The
path with the highest score is selected as the final
solution.

Golden, Wang, and Liu (1988) incorporate the
center of gravity idea and Tsiligirides’s random-
ization concept, along with learning capabilities,
into a new procedure for solving the OP. For
each point { that is not on the current path, a
weighted measure is computed by

W=a-S;+B-C,+v-E, (4)

where a + B+ vy =1, §; is a combined score that
takes into account a point’s actual score, the
scores of its neighbors, distances to its neighbors,
and a learning component that includes informa-
tion regarding previous solutions, C; is a scaled
measure of the distance from i to the center of
gravity, and E; is a scaled measure of the dis-
tance from i to the start and end points. At each
step of the procedure, the five points with the
largest W, values are identified and one of these
points is selected at random and inserted in a
least-cost way onto the current path. Feasibility
with respect to the maximum time limit 7, ,, is
then checked. If the path is feasible, another
point is considered for insertion. If the path is
infeasible, then a point is removed from the path
to make it feasible. The process of selecting and
inserting points is carried out until no new point
can be feasibly added to the current path. A new
solution is generated by recomputing the center
of gravity, updating the W,’s, and repeating the
selection and insertion procedures. Initially, five
centers of gravity are used and these are posi-
tioned at the centers of five squares. For each
center, 20 solutions are generated, and the one
with the highest score is selected as the final
solution.

Keller (1989) modifies his algorithm for the
multi-objective vending problem (Keller, 1985) to
solve the OP. The algorithm contains a path-con-
struction stage that is followed by an improve-
ment stage. In the construction stage, two differ-
ent approaches are used to select a point for
insertion onto a path. The first approach is a
deterministic approach that computes a desirabil-
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ity measure similar to (1) for each point i not on
a path, and selects the point with the largest
value for insertion onto the current path. The
second approach is stochastic in nature. The
scores of all points that are not on the current
path and can be feasibly inserted are normalized.
A random number between 0 and 1 is generated
and the point corresponding to this number is
inserted onto the current path. After a path has
been constructed, an improvement stage that
consists of two steps is applied to the solution.
The first step inserts one point onto the path and
considers removing none, one, or two points to
increase the total score. The second step simulta-
neously removes a cluster of points and inserts a
cluster of points to increase the total score.

Ramesh and Brown (1991) integrate four
phases — point insertion, cost improvement, point
deletion, and maximal insertions ~ into an algo-
rithm that solves the OP. In the first phase, an
insertion method that relaxes the maximum time
limit is used to construct a path. The path is then
improved by a 2-opt procedure followed by a
3-opt procedure. In the third phase, one point is
removed and one point is then inserted in an
attempt to decrease the length of the path. Fi-
nally, as many unassigned points as possible are
inserted onto the current path. The last three
phases are applied repeatedly in an attempt to
find a high-quality solution.

We point out that all of the heuristic methods
that we have described so far have been applied
to 49 benchmark problems generated by Tsiligiri-
des (1984). We will apply our new heuristic to
these 49 problems and compare our results with
the published solutions produced by the five dif-
ferent heuristics.

In the past three years, two exact solution
methods for a variant of the OP, in which the
start and finish points are the same, have ap-
peared in the literature. Laporte and Martello
(1990) use a branch and bound method to solve
small, randomly generated test problems that
contain as many as 20 points. Ramesh, Yoon, and
Karwan (1992) use Lagrangian relaxation along
with improvement procedures within a branch
and bound method to solve large, randomly gen-
erated test problems that contain as many as 150

points for which the 7, values are also ran-
domly selected.

Sokkappa (1990) develops two exact methods
(one based upon a branch and bound method for
the knapsack problem and one based upon a
branch and bound method for the TSP) and a
heuristic method for solving the OP. The heuris-
tic method is based upon the method of Golden,
Wang, and Liu (1988). For each point i not on
the current path, a neighborhood score is com-
puted as follows

ax

ns;=s;+ 3, s;e *, for all unvisited j. (5)
j#i

The criterion
L, ns;/cost, (6)

is used to identify five candidate points for inser-
tion onto the current path, where L; is the learn-
ing factor developed by Golden, Wang, and Liu
(1988), and cost; is the cheapest insertion cost for
point {. Each of the five points is selected with
the same probability. After one of the five candi-
dates is inserted onto the path, a point that is
currently on the path is removed if the time limit
T, is violated. The point that has been removed
is no longer considered for insertion and this step
terminates when no point can be inserted. A
2-opt procedure followed by additional insertions
is then used to increase the score. Five centers of
gravity are selected initially in the same as way in
Golden, Wang, and Liu and 10 solutions are
generated for each. The solution with the highest
score is selected as the final solution. Sokkappa
claims that his heuristic method slightly outper-
forms Golden, Wang, and Liu’s method, although
the heuristic was not applied to any of the 49
benchmark problems.

Leifer and Rosenwein (1994) use 0-1 integer
programming and a cutting plane method to find
a tight upper bound on the optimal objective
function value to each of the 49 benchmark test
problems. We will use these bounds to assess the
effectiveness of our new heuristic.

Pillai (1992) develops an exact procedure to
solve the TSSP + 1 problem. Pillai treats the OP
as a special case of the TSSP+ 1. Her exact
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procedure is based upon a branching and cutting
plane method. A relaxed LP is solved first, the
violated constraints are examined and then added
to the relaxed LP, and the LP is solved again.
The steps are repeated until no violated con-
straints are detected. If the solution to the re-
laxed LP is integer, the procedure stops; other-
wise, a branching on variables with noninteger
values is carried out. Pillai claims that the final
solution is the optimal solution. Pillai applies her
method to the 49 benchmark problems. We will
compare the results produced by our new heuris-
tic to those produced by Pillai’s method in Sec-
tion 4.

3. A new heuristic for solving the OP

In this section, we describe a new heuristic for
the OP that is easy to understand and easy to
implement, and that produces near-optimal solu-
tions in a short amount of computation time. Qur
heuristic consists of two steps: initialization and
improvement. We initialize the procedure by con-
structing an ellipse over the entire set of points
by using the start and end points as the two foci
of the ellipse and the time limit 7, as the
length of the major axis. In generating a path, we
consider only the points that are within the el-
lipse, since any path that contains a point outside
the ellipse will violate the 7, constraint. We
generate several paths over the points and, in the
improvement step, we allow the total score to
decrease in the hope of ultimately finding a path
with a large total score that is nearly optimal.

3.1. Initialization

The initialization step uses a greedy method
on the points within the ellipse in order to insert
the point with the cheapest insertion cost onto
the path while ignoring its score. We construct L
solutions for each problem, where L is the mini-
mum of (10, N) and N is the number of points
within the ellipse. To get the [-th solution, the
first path is constructed by finding the point with
the [-th largest distance from the start and end

points, forming a path through these three points,
and then inserting points in a greedy way (with
respect to distance not score) onto this path.
When this path is full (that is, inserting a point on
the path violates the time limit constraint), we
construct a path through the remaining points
using the greedy method. We continue to con-
struct paths in this way until all points within the
cllipse are on a path. Among these paths, we
choose the path with the largest total score as the
solution path and its score is the solution score.
Among all L solutions, we choose the one with
the highest score as the initial solution. We de-
note the initial solution path as path,, and the
set of other paths as paths

nop*

3.2, Two-point exchange

Using the starting solution produced in the
initialization step, we try to improve this solution
by performing a two-point exchange. A point i is
moved from a path in paths,,, and inserted onto
path,, and a point j is moved from path,, and
inserted onto a path in paths,,,. The insertions
are performed in the cheapest way, and path,,
and the paths in paths,,, are always kept feasi-
ble. Point i is inserted between two points on
path, so that the increase in distance is mini-
mized. Point j is inserted onto a path in paths,,
where the insertion cost is least and the path that
results is feasible. If no feasible insertion is possi-
ble in paths,,,, a new path that contains point j
must be generated. Such an exchange can cause
path ,, to become a path in paths,,, when a path
in paths,, has a larger score.

Let L(p) denote the length of path p. The
feasibility of the path that results when point i is
inserted onto path p and point j is removed from
path p can be checked by examining the follow-
ing expression

L(p) ~ (¢ p+Cpij = Cpjigi)

+ min {Ci,k €k~ Ck,pk} ) (7)

k visited in p,
k+1,j

where pj is the point that precedes point j on
path p, fji is the point that follows point j on
path p, and pk is the point that precedes point k
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Table 1
Two-point exchange algorithm for the OP

For j = the first to the last point in path,

For i = the first to the last point in the first to the last path in paths

(A loop)
(B loop)

If exchanging i and j is feasible and the total score increases, do the exchange and go to the A loop

Else
Set the best exchange = one with the highest score
End B loop

If the score of the best exchange > record — deviation, make the best exchange

End A loop

on path p after point j has been removed from
the path. In (7), the term after the first minus
sign is the savings that results from removing
point j and the term after the second plus sign is
the cost incurred by inserting point i onto path p.
If the distance that results from the calculation in
(7) is less than or equal to T, then the inser-
tion is feasible; otherwise, the insertion is infeasi-
ble.

For each point in path,,,, candidate exchanges
are considered one at a time. Whenever a candi-
date exchange leads to a higher total score, the
exchange is performed immediately, and all other
exchanges are ignored. Whenever there is no
candidate exchange for a point that increases the
total score, we consider exchanges that decrease
the total score by a small amount. If the decrease
in score is above a threshold value for a specific
exchange, then we perform it; otherwise, the point
remains in its current position on the path, and
we consider exchanging a different point. The

Table 2
Algorithm for one-point movement in the OP

score of the best solution obtained during this
process is the record and the amount of decrease
below record that we allow during the process is
called the deviation. The approach is referred to
as record-to-record improvement and is due to
Dueck (1990). Our two-point exchange algorithm
is given in Table 1.

3.3. One-point movement

We now consider moving one point at a time
between paths and we move the points in a
greedy way instead of the cheapest-cost way. We
first attempt to insert a point { between points in
the first edge of path p, then into the second
edge of p, and so on. We make the move when-
ever it is feasible and it increases the total score.
If no movement increases the total score, then we
consider making the feasible movement that de-
creases the total score by the least amount. To
obtain a candidate movement for a point and

For i = the first to the last point in the T,,,,, ellipse (say point i is in path q)
For j = the first to the last point in the first to the last path

(p) in both path,, and paths,,, sets (p # q)

(A loop)

(B loop)

If inserting i in front of j on path p is feasible and the total score increases,

then make the movement and go to the A loop
Else

Set the best movement = one with the highest score

End B loop

If the score of the best movement > record — deviation, then make the best movement

End A loop
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then determine which move to make, we apply moved at a time, this type of movement can still
the steps in Table 2. change path,,. One point can be moved from
We point out that although only one point is path,, to a path in paths,,, and vice versa. We

(a) (b)

E X N )
~lo W

e w
~

~e
e

-e
-1

() (d)

Score=9
2

n

Score=11

Fig. 1. Two-point exchange, one-point movement, and 2-opt improvement in the OP heuristic.
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can also move a point between paths in paths,,,.
We consider all of these movements in an effort
to find the path with the largest total score.

3.4. Clean up

In order to shorten the length of path,, we
apply a 2-opt improvement procedure (Lin, 1965).
The hope is that by decreasing the length of the
path we have more opportunities to insert points
from paths in paths,,, onto path,,. We illustrate
our two-point exchange, one-point movement, and
2-opt improvement in Fig. 1. In Fig. 1(a), we
provide the scores and locations of the points,
where the number above a point is the associated
score. Fig. 1(b) shows the initial solution, where
the thick, bold lines denote path,, (that is, the
path 1-4-5-6-9 with a total score of eight), and
the thin lines denote the paths in paths,, (that
is, the two paths 1-2-3-9 and 1-7-8-9). In Fig.
1(c), a two-point exchange is performed by insert-
ing point 5 between points 1 and 7, and inserting
point 8 between points 6 and 9 at the same time.
This exchange results in a path with a total score
of seven, which is lower than the initial solution
and path,, is now 1-5-7-9. In Fig. 1(d), we
perform a one-point movement: point 7 moves

Table 3
A new heuristic for the TOP

from path,, (that is, from 1-5-7-9) to a path in
paths,,, (that is, to 1-2-3-9). The new path (that
is, 1-2-7-3-9) has a score of nine and becomes
path,,. We now perform a 2-opt procedure on
path,,, in Fig. 1(d). path,, becomes 1-2-3-7-9
with a score of nine but its length has been
reduced. To see this, compare the path 1-2-7-
3-9 in Fig. 1(d) and the reduced-length path
1-2-3-7-9 in Fig. 1(e). We now move point 4
from a path in paths,, to path . This yields the
solution shown in Fig. 1(f), which has the highest
score of all solutions produced by our heuristic.

3.5. Reinitialization

In the hope of finding a path that yields a
larger total score, we remove k points from
path, that have the smallest ratio

s;/cost;, (8)

where cost; is the current insertion cost of i, and
insert them onto paths in paths,,,. As the itera-
tion count increases in our procedure, we in-
crease the value of £ and remove more points
from path,,,. Our complete, new heuristic for the
OP is shown in Table 3.

Step 1. Initialization
Perform initialization
Set record = team score of the initial solution
Set p=10
Set deviation = p% X record
Step 2. Improvement
For k=1,2,...,K
Fori=1.2,...,1
Perform two-point exchange
Perform one-point movement
Perform clean up
If no movement has been made above, end I loop
If a new better solution has been obtained, then
set record = score of new best solution
set deviation = p% X record
End I loop
Perform reinitialization
End X loop
Step 3. Reset p =5, and redo Step 2 once more

(K loop)
(I loop)
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Table 4
Abbreviations and symbols for the OP
Abbreviations
P, Test problem number
T ax Maximum distance permitted
N, Number of points in problem set i
OH New heuristic for the OP
CPU Solution time in seconds on a SUN 4 /370
UB Upper bound on score from Leifer and Rosenwein (1991)
TS Tsiligirides (1984) heuristic
GV Golden, Levy, and Vohra (1987) heuristic
GL Golden, Wang, and Liu (1988) heuristic
KL Keller (1989) heuristic
RB Ramesh and Brown (1991) heuristic
PL Pillai (1992) exact method
TA Our implementation of Tsiligirides’s stochastic algorithm
Symbols
+ OH produced a higher score
- OH produced a lower score
- — Solution of problem not attempted
? No comparison listed since previous heuristic produced a score that exceeded the reported upper bound
Empty cell OH produced the same score
Table 5
Dimensions for problems taken from the OP literature
Set 1 Set2 Set 3 Set 4
N, =31 N,=21 N;=33 Ny=32
Pno Tmax PI'IO Tmax PI'IO Tmax Pno Tmax
l.a 5 2.a 15 3a 15 4.a 5
1b 10 2b 20 3b 20 4b 10
l.c 15 2.c 23 3¢ 25 4.c 15
1d 20 2d 25 3d 30 4d 20
le 25 2.e 27 3e 35 4e 25
1.f 30 2.f 30 3f 40 4f 30
lg 35 2.g 32 3g 45 4.8 35
1.h 40 2.h 35 3h 50 4.h 40
1i 46 2. 38 3i 55 4. 46
1j 50 25 40 3j 60 4 50
1k 55 2k 45 3k 65 4k 55
1l 60 31 70 41 60
1.m 65 3.m 75 4.m 65
1.n 70 3.n 80 4.n 70
1.0 73 3.0 85 4.0 73
1lp 75 3p 90 4p 75
1.q 80 3.q 95 4.q 80
1r 85 3r 100 4.r 85

3s 105

3.t 110
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4. Computational testing

We test the performance of our new heuristic
for the OP in two ways. We apply our heuristic to
67 problems taken from the literature and com-
pare our solutions with the published results. We
then generate 40 new test problems and apply
our heuristic to these new problems. Our heuris-
tic is coded in FORTRAN and executed on a SUN
4 /370 workstation. We perform all computations
using real precision (we do not round or truncate
values), and round the length of the final path to
one decimal place. In Table 4, we list abbrevia-
tions and symbols that we use throughout the
remainder of this section.

4.1. Results on problems from the literature

Data for three sets of test problems have been
published by Tsiligirides (1984). We present in-
formation about the test problems in Table 5. In
examining Table 5, we see that in Set 1 there are
32 points. For each of the 18 problems in Set 1,
the locations and scores of the points are the

Table 6
Comparison of results on test problem Set 1

same, but the maximum distance value (7,,,) is
increased as we move from problem 1.a to prob-
lem 1.r. For each of the 11 problems in Set 2 and
20 problems in Set 3, the locations and scores of
the points are the same, but the maximum dis-
tance value (7,,,) is increased from 15 to as
much as 110.

We point out that the data for Set 1 as pub-
lished by Tsiligirides (1984) contains an error. In
his paper, Tsiligirides presents two solutions to
problem l.r with 7, ., =85. One solution has a
total score of 285 and a distance of 81.82 and the
other solution has a score of 285 and a distance
of 81.33. When checking these solutions using the
published locations and scores for problem 1.r,
we obtain scores of 285 for both problems, but
the distances are 88.23 and 87.74, which exceed
the T, value. The cause of this violation is the
coordinate of point 31. The published coordinate
is (4.90,18.90) and this coordinate yields the two
infeasible solutions just cited. Changing the coor-
dinate to (4.90, 14.90) yields the feasible solutions
published by Tsiligirides. We point out that all of
the computational testing on Set 1 reported in

New heuristic Previous methods

OH vs. previous

P, OH CPU UB TA GV GL KL

no

RB PL TA GV GL KL RB PL

la 10 0.67 10 10 10 10 10
Lb 15 0.80 20 15 15 15 15
lc 45 2.28 45 45 45 45 45
1d 65 17.49 70 65 65 65 65
le 90 9.01 95 90 90 90 90

1.f 110 31.92 120 110 110 110 110
lg 135 25.25 140 135 125 135 130
1h 155 16.76 160 150 140 155 155
Li 175 21.58 180 170 165 175 175

1j 190 2491 195 185 180 190 185

1k 205 24.67 210 195 200 205 200
11 225 24.28 230 220 205 225 225
1lm 240 23.26 245 235 220 240 240
1ln 260 25.09 260 255 240 260 260
lo 265 25.24 270 260 255 265 265
1p 270 28.53 270 265 260 270 270
lq 280 26.84 285 270 275 280 280
lr 285 21.71 285 280 285 285 285

10 10
15 15
45 45
65 65
90 90
110 110
135 135 + +
155 155 + +
175 175 + +
180 190 + + + +
205 205 + + +
225 225 + .+
240 240 + +
260 260 + +
265 265 + +
275 270 + + ?
280 280 + +
285 280 + +

Summary of OH vs. previous 11+ 11+ 0+ 3+ 1+ 1+

0- 0- 0— 0- 0- 0-
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Table 7

Comparison of results on test problem Set 2

New heuristic Previous methods OH vs. previous

P, OH CPU UB TS GV GL KL RB PL TS GV GL KL RB PL

2.a 120 1.29 145 120 120 120 120 120 120
2b 200 2.24 200 190 200 200 200 200 200 +

2.c 210 4.45 215 205 210 205 210 210 210 + +

2d 230 5.65 240 230 230 230 230 230 230

2e 230 6.37 265 230 230 230 230 230 230

2.f 265 6.18 275 250 260 265 260 260 275 + + + + -
2.g 300 7.21 305 275 260 300 300 300 300 + +

2.h 320 7.81 350 315 300 320 320 320 320 + +

2i 360 6.84 375 355 355 360 360 385 360 + + ?

2j 395 7.14 400 395 380 395 380 395 395 + +

2k 450 0.61 450 430 450 450 450 450 450 +

Summary of OH vs. previous 7+ 5+ 1+ 2+ 1+ 0+

0- 0- 0- 0- 0- 1-
the OP literature relies on Tsiligirides’s published against previous results using the coordinates of
data with the (4.90,18.90) coordinate. We will the problem in Set 1 as published by Tsiligirides.
compare the performance of our new heuristic Of course, we cannot include Tsiligirides’s pub-
Table 8
Comparison of results on test problem Set 3
New heuristic Previous methods OH vs. previous

P, OH CPU UB TS GV GL KL RB PL

3a 170 4.37 175 100 170 170 170 170 170
3.b 200 5.16 200 140 200 200 200 200 200
3.c 260 9.40 260 190 250 260 260 260 260
3d 320 9.96 320 240 320 320 320 320 320

GV GL KL RB PL

+

3e 390 15.38 390 290 380 390 370 390 390 + +
3.f 430 18.65 430 330 420 430 430 430 430 +

g 470 26.84 470 370 450 470 460 470 470 + +
3.h 520 28.74 520 410 500 520 520 520 520 +

3.i 550 30.27 550 450 520 550 550 550 550 +

3 580 27.68 580 500 580 580 570 580 580 +
3k 610 25.02 610 530 600 610 610 610 610

3.1 640 29.82 640 560 640 640 640 640 640

3m 670 29.25 670 590 650 670 670 670 670 +

3n 710 30.14 710 640 690 710 700 710 710 + +
3.0 740 28.30 740 670 720 740 740 740 740 +

3p 770 24.43 770 690 770 770 760 770 770 +

3q 790 22.33 790 720 790 790 790 790 790
3r 800 0.67 800 760 800 800 800 800 -
3.5 800 0.60 800 770 800 800 800 800 -
3.t 800 0.72 800 790 800 800 800 800 -

S IR A T AT T T S S A
+
+

10+ 0+ 5+ 0+ 0+
0- 0- 0- 0- 0+ 0—

Summary of OH vs. previous
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lished results on this problem set in our compar-
isons, since his results are for the problems that
use the (4.90, 14.90) coordinate. To overcome this
deficiency, we coded a version of Tsiligirides’s
stochastic algorithm in ForTRAN (we denote our
version by TA) and ran TA on all 18 problems in
Set 1 using the (4.90, 18.90) coordinate. We also
applied our new heuristic to a corrected data set
(with the coordinate (4.90, 14.90)), denoted by Set
4 in Table 5, and will compare its results against
those of Tsiligirides’s stochastic algorithm (that
is, against TA) and against his published resulits.
In order to test our heuristic, we must set the
values of K and [ in the improvement step of our
heuristic (see Step 2 in Table 3). We set K equal
to min(10,0.75P), where P is the number of
points on path,,. After some experimenting, we
set the value of I at 10. Using these parameter
settings, we compare the results produced by our
heuristic (OH) to results produced by six other
methods (TA, GV, GL, KL, RB, and PL) on
problem Sets 1, 2, and 3 in Tables 6-8. We note
that the first five methods are heuristics, while
the sixth method is an exact solution procedure.

Table 9
Comparison of results on test problem Set 4

In examining Tables 6 and 7, we point out that
for two problems (that is, 1.p and 2.i) the solu-
tions produced by Ramesh and Brown’s heuristic
exceeded the upper bounds on the scores given
by Leifer and Rosenwein. We cannot check the
feasibility of these solutions since their paths
were not given by Ramesh and Brown. Because
of this discrepancy, we do not compare OP against
RB on these two problems.

For the 49 test problems listed in Tables 68,
OH produces scores for 38 problems that are
better than the scores produced by TA, 26 scores
that are better than those produced by GV, 1
score that is better than that produced by GL, 10
scores that are better than those produced by KL,
2 scores that are better than those produced by
RB, and 1 score that is better and 1 score that is
worse than those produced by PL. We point out
that on problem 1.r, OH produces a score of 285
and PL produces a score of 280. This should not
happen since PL is supposed to be an exact
method. Our solution is feasible, but we cannot
verify the solution produced by PL since it has
not been published. For the 49 test problems, OH

New heuristic

Previous methods

OH vs. previous

P, OH CPU TS TA TS TA
4a 10 0.22 10 10
4b 15 0.27 15 15
4.c 45 0.72 45 45
4d 65 4.76 65 65
4e 90 247 90 85 +
4.f 110 10.86 110 110
4.8 135 14.11 135 135
4.h 155 21.81 150 150 + +
4. 175 21.62 175 175
4. 190 22.76 190 185 +
4k 205 24.81 205 200 +
4.1 220 20.39 220 220
4.m 240 26.78 240 240
4.n 260 25.51 255 250 + +
4.0 265 27.04 260 265 +
4.p 275 27.47 270 265 + +
4.q 280 28.17 275 270 + +
4r 285 21.64 280 285 +

Summary of OH vs. previous 6+ 7+

0-— 0-
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produced only one score that was worse than the
score produced by one of the other six methods.
The complete set of results, including paths and
locations of points, is given by Chao (1993).

The results in Tables 6-8 reveal that OH,
indeed, produces high-quality results. One might
argue, however, that other heuristics (e.g., GL)
perform nearly as well. Furthermore, the GL
computer code is, roughly speaking, comparable
to OH in terms of running time. Nonetheless, the
new heuristic stands out for several reasons. First,
it is, we think, a bit smarter than the GL proce-
dure. The GL procedure relies heavily upon brute
force repetition from five initial centers of grav-

Table 10
Comparison of results on squared-shaped test problems

Previous method OH vs. TA

New heuristic

P, OH CPU TA CPU
5.a 10 1.05 10 1810
5.b 40 0.46 40 3420

5.¢c 120 4.33 100 68.20 +
5d 195 6.17 190  151.30 +
S5 290 73.42 290 14430
5.f 400 54.82 400  188.90
S.g 460 32.42 460 23720
5.h 575 98.92 575  288.50
5. 650 58.13 645  329.30 +
5 730 68.05 730 373.50
5k 825 65.23 820 41490
5.1 915 84.59 915  461.30
5.m 980 82.18 980  495.20
S5.n 1070 119.00 1070 532.40
5.0 1140 116.70 1140 566.70
S.p 1215 108.93 1215 598.80
5.q 1270 13245 1265  629.10 +
S5x 1340  502.41 1340  655.50
5.8 1380  467.13 1390  682.40 -
S5u 1435 128.56 1455 71110 -
S.u 1510  316.30 1515 736.40 -
Sv 1550  469.94 1550  761.40
Sw 1595  474.64 1590  783.50 +
5x 1635 357.98 1635 807.90
Sy 1655  268.86 1655  826.20
S.z 1680 32.05 1670  847.30 +

Summary of OH vs. TA 7+
3—

Table 11
Comparison of results on diamond-shaped test problems

New heuristic Previous method OH vs. TA
P OH CPU TA CPU

6.a 96 13.01 90 25.10 +
6.b 294 27.86 258 107.30 +
6.c 390 23890 354 183.90 +
6.d 474 74.48 432 180.30 +
6.e 570 139.78 516 24890 +
6.f 714 137.90 642  316.90 +
6.8 816  204.98 732 37290 +
6.h 900  231.57 828  423.90 +
6.i 984  246.18 906  482.90 +
6. 1044  264.77 978  527.90 +
6.k 1116  232.57 1020  568.50 +
6.1 1176 230.95 1110 608.40 +
6.m 1224 223.12 1152 645.30 +
6.n 1272 212.27 1200 678.90 +

Summary of OH vs. TA 14+

0 —

ity, whereas the new heuristic is based primarily
on the clever notion of record-to-record improve-
ment. Second, this application is one of the first
to successfully test the record-to-record improve-
ment idea on a complex discrete optimization
problem. Third, unlike the GL heuristic, the new
heuristic generalizes in a natural way to solve
related combinatorial problems (e.g., Chao,
Golden, and Wasil, 1996).

In Table 9, we compare results produced by
OH to results produced by TS and TA on prob-
lems in Set 4 (recall, this is the data set with the
correct coordinate to point 31 and TA is our
version of Tsiligirides’s stochastic algorithm). In
examining Table 9, we point out that the column
of results under the heading TS are the values
that Tsiligirides reported in his paper. The results
produced by TS don’t always coincide with those
of TA since there is a stochastic component in
both algorithms. For the 18 problems listed in
Table 9, OH produces scores for six problems
that are better than those produced by TS and 7
scores that are better than those produced by
TA.
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4.2. Results on new test problems

In this section, we generate two new sets of
test problems that contain a total of 40 problems
(see Chao (1993) for new problem data), apply
OH and TA to solve each problem, and then
compare the results produced by the two heuris-
tics.

4.2.1. Square-shaped test problems

We generate 26 test problems in which the
locations of the points take on a square shape.
Each test problem has 66 points. The start point
and end point are near each other, and both are
located at the center of four concentric squares.
The distance between a point and its adjacent
neighbor is either 2 or 2/2. Points further from
the start and finish have larger scores than points
that are closer in. Points that comprise the inner-
most, second, third, and outermost concentric
squares have scores of 5, 15, 25, and 35, respec-
tively. We obtain 26 different problem instances
by varying T,,,, from 5 to 130 in increments of 5.

4.2.2. Diamond-shaped test problems

We generate 14 problems in which the loca-
tions of the points take on a diamond shape.
Each test problem has 64 points. The start point
and end point are located far apart at the top and
bottom of the diamond. The distance from a
point to its adjacent neighbor is either 2 or y2.
Points further from the start and finish have
larger scores than points that are closer in. The
scores are multiples of 6 and range from 6 to 42.
We obtain 14 different problem instances by vary-
ing T, from 15 to 80 in increments of 5.

We apply OH and TA to the square-shaped
and diamond-shaped test problems and show the
results produced by each heuristic in Tables 10
and 11. For the 26 square-shaped problems, OH
produces scores for 7 problems that are better
than the scores produced by TA, while TA pro-
duces scores for 3 problems that are better than
the scores produced by OH. For the 14
diamond-shaped problems, OH produces scores
on all 14 problems that are better than the scores
produced by TA. We also point out that for both

sets of problems the CPU time for OH is much
shorter than the time required by TA.

5. Conclusions

In this paper, we have presented a new heuris-
tic for the orienteering problem. Our heuristic is
based on the notion of record-to-record improve-
ment. We have applied our heuristic to 67 prob-
lems from the literature as well as to 40 new test
problems. Our new heuristic has been shown to
be computationally efficient and it performs well
on all test problems.
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