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Abstract

In the team orienteering problem, start and end points are specified along with other locations which have
associated scores. Given a fixed amount of time for each of the M members of the team, the goal is to determine M
paths from the start point to the end point through a subset of locations in order to maximize the total score. In this
paper, a fast and effective heuristic is presented and tested on 353 problems ranging in size from 21 to 102 points.

The computational results are presented in detail.

Keywords: Vehicle routing problem; Heuristic search

1. Introduction

Orienteering is an outdoor sport usually played
in a mountainous or heavily forested area. Armed
with compass and map, a competitor starts at a
specified control point, tries to visit as many
other control points as possible within a pre-
scribed time limit, and returns to a specified
control point. Each control point has an associ-
ated score, so that the objective of orienteering is
to maximize the total score. A competitor who
arrives at the finish point after time has expired is
disqualified, and the eligible competitor with the
highest score is declared the winner. Since time is
limited, a competitor may not be able to visit all
control points. A competitor has to select a sub-
set of control points to visit that will maximize
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total score subject to the time restriction. This is
known as the Single-Competitor Orienteering
Problem (OP).

Team orienteering extends the single-competi-
tor version of the sport. A team consisting of
several competitors (say, 2, 3, or 4 members)
starts at the same point. Each member of the
team tries to visit as many control points as
possible within a prescribed time limit, and then
ends at the finish point. Once a team member
visits a point and is awarded the associated score,
no other team member can be awarded a score
for visiting the same point. Thus, each member of
a team has to select a subset of control points to
visit so that there is minimal overlap in the points
visited by each member of the team, the time
limit is not violated, and the total team score is
maximized. We call this the Team Orienteering
Problem and denote it by TOP.
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The TOP can be modeled as a multi-level
optimization problem. At the first level, we need
to select a subset of points for the team to visit.
At the second level, we need to assign points to
each member of the team. At the third level, we
need to construct a path through the points as-
signed to each member of the team. We point out
that the single-competitor version of this problem
has been shown to be NP-hard (Golden, Levy,
and Vohra, 1987), so the TOP is at least as
difficult.

We now describe a network optimization rep-
resentation of the TOP. Let V' be the set of
control points and E be the set of edges between
points in V. Then G = {V,E} is a complete
graph. Each point i in V' has a score 5; = 0
associated with it. The start point is vertex 1 and
the finish point is vertex n, and these points each
have a score of 0. Each edge in E has a symmet-
ric, nonnegative cost c;; associated with it, where
¢;; is the distance between point i and point j, or
the cost of traveling between the two points. For
the M-member TOP, we need to find a set of M
paths, where each path starts from point 1 and
finishes at point n, that maximizes total team
score. Each point’s associated score is only
awarded on the first visit by a team member and
the total time taken to visit the points on each of
the M paths cannot exceed the specified limit,
denoted by 7,,. We point out that real-world
orienteering competitions involve a variety of
complications (e.g., stochastic travel times) not
mentioned in this paper or in the cited literature.
In the operations research literature, the orien-
teering problem denotes a class of routing prob-
lems related to the traveling salesman problem.

We note that the orienteering problem de-
scribed by Chao, Golden, and Wasil (1996) can be
considered a special case of the TOP, that is, the
OP is a one-member TOP. In addition, many of
the OP applications can be extended to team
orienteering applications. For example, the home
fuel delivery model used by Golden, Assad, and
Dahl (1984) can be extended in the following way.
Treating each customer’s urgency for fuel as a
score, each vehicle in the fleet would be assigned
a subset of customers to service and a route
would be constructed for each vehicle. The objec-

tive would be to maximize the total score amassed
by the fleet. In a recent paper, Butt and Cavalier
(1992) model the recruiting of college football
players as a TOP. Suppose there are many high
schools surrounding a college that a recruiter
would like to visit in order to scout members of
the football team. The recruiter needs to leave
and return to the college campus within the same
day and the recruiter can only meet with the high
school students during their class time (this estab-
lishes the maximum time limit 7, ). There is a
score associated with each high school that mea-
sures the potential ‘benefit’ to the college of
visiting the high school. The number of high
schools is so large that the recruiter cannot visit
all schools within a limited time period (say, one
day). If the recruiter has M days to visit the high
schools, then the recruiter would like to find a set
of M paths that maximizes the total potential for
recruiting football players, where the total time
taken by the recruiter to visit high schools on
each of the M paths cannot exceed T,,,. The
TOP can also be used to model a variety of
vehicle routing problems in which only a subset of
the customers can be visited on a given day.

In the next section, we mention an unpub-
lished solution approach for the TOP developed
by Butt and Cavalier. In the third section, we
develop a new heuristic for the TOP. In the
fourth section, we generate 353 test problems,
present computational results produced by our
new heuristic, and compare these results to those
produced by a stochastic algorithm for the team
orienteering problem. In the final section, we
present our conclusions.

2. Review of solution approaches to the TOP

Although the original orienteering problem has
attracted the attention of many researchers, the
TOP has received no attention in the open litera-
ture. We are aware of only one unpublished
paper - the recent work by Butt and Cavalier
(1992) ~ in which the TOP is solved. In their
version of the TOP, the start and finish points are
the same. They apply their heuristic to small
problems with less than 15 points and compare
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the results produced by their heuristic against the
optimal results produced by a mathematical pro-
gramming model that they formulated and solved.
Based upon the performance of the heuristic on
the small problems, Butt and Cavalier conclude
that their method should work well on large
problems, but they do not apply it to large-size
TOPs. In addition, Butt and Cavalier do not
publish test problem data in their paper.

In contrast to the TOP, the orienteering prob-
lem has been widely studied and a variety of
heuristics have been developed and tested (see
Chao (1993) and Chao, Golden, and Wasil (1996)
for details). In order to evaluate the performance
of our new TOP heuristic, we modify a standard
OP heuristic so that it will solve the TOP. Since
Tsiligirides’s stochastic algorithm for the OP
(Tsiligirides, 1984; Chao, Golden, and Wasil,
1996) can be easily modified to solve the TOP, we
apply his algorithm and code two different ver-
sions. This is discussed in more detail in Section
4.

3. A new heuristic for solving the TOP

The TOP is more difficult to solve than the OP
since we must take into account the performance
of the entire team and not just one member as in
the OP. In this section, we describe a new heuris-
tic for the TOP that is easy to understand and
easy to implement, and that produces high-qual-
ity solutions in a short amount of computation
time. Our heuristic consists of two steps: initial-
ization and improvement. We initialize the proce-
dure by constructing an ellipse over the entire set
of points by using the start and finish points as
the two foci of the ellipse and the time limit 7, ,,
as the length of the major axis. We call this the
T,..x cllipse. In generating a path, we consider
only the points that are within the ellipse, since
any path that contains a point outside the ellipse
will violate the T, limit. We want to generate
an initial solution quickly and then rely on the
improvement step to find a solution with a large
team score. In the improvement step, we allow
the team score to decrease in the hope of ulti-
mately finding a better solution.

3.1. Initialization

Initially, L = min(5, N) points, where N is the
number of points within the ellipse, are chosen as
candidate points to assign to each of the M paths
(note that M =2, 3, or 4 in our computational
experiments). The L points are chosen to be the
points furthest from the start and finish points. M
of the L points are selected as the first points
assigned to the M paths. Then, the remaining
points are inserted in a greedy way (using cheap-
est insertion) onto the paths until each of the M
paths is full (a path is full when inserting an
additional point onto the path violates the time
limit constraint). If unassigned points remain, we
continue constructing new paths with these points
until all points have been assigned. We then
select the M paths with the highest scores as the
initial solution and the sum of the scores of these
paths is the team score.

For a problem, (ﬂ‘l) different solutions are pos-
sible when L > M. If L. <M, an optimal solution
can be obtained easily. (Note that for the values
of M considered, L <M implies L = N.) In this
case, there are at most as many points in the 7,,,,
ellipse as there are team members, so that mem-
bers can visit at most one point in an optimal
solution. Among the (5;) solutions, the one with
the highest team score is selected as our initial
solution. We denote the set of M paths with the
highest team score as paths,,, (these are the
paths that form our initial solution) and the set of
all remaining paths is denoted by paths.,,.

The above initialization procedure assumes
that points are located in two-dimensional Eu-
clidean space. This is the case for all of the test
problems considered in this paper. When this is
not the case, starting solutions can be constructed
in other ways and the improvement step may then
be applied.

3.2. Two-point exchange

Using the starting solution produced in the
initialization step, we try to improve this solution
by performing a two-point exchange. A point i is
moved from a path in paths,,,, and inserted onto
a path in paths,,, and a point j is moved from a



I-M. Chao et al. / European Journal of Operational Research 88 (1996) 464-474 467

path in paths,, and inserted onto a path in
paths,, .. The two points are exchanged simulta-
neously and the insertions are performed in the
cheapest way. If no feasible insertion is possible
in paths,,, (that is, all insertions violate the T, .,
constraint), then a new path that contains point j
is generated. This path contains point j along
with the start and finish points.

Let L(p) denote the length of path p. The
feasibility of the path that results when point i is
inserted onto path p and point j is removed from
path p can be checked by examining the follow-
ing expression

L(p) = (¢ 5+ Cpji = Cpjgi)
+ min  {c¢;; +¢; pp — Cppi}s (1)

k visited in p,
k#1,j

where pj is the point that precedes point j on
path p, fj is the point that follows point j on path
p, and pk is the point that precedes point £ on
path p after point j has been removed from the
path. In (1), the term after the first minus sign is
the savings that results from removing point j
and the term after the second plus sign is the cost
incurred by inserting point { onto path p. If the
distance that results from the calculation in (1) is
less than or equal to T, , then the insertion is
feasible; otherwise, the insertion is infeasible.
For each point in paths,,, candidate ex-
changes are considered one at a time. Whenever
a candidate exchange leads to a higher team
score, the exchange is performed immediately,
and all other exchanges are ignored. Whenever
there is no candidate exchange for a point that

increases the team score, we consider exchanges
that decrease the team score by a small amount.
If the decrease yields a score that is above a
threshold value, then we perform it; otherwise,
the point remains in its current position on the
path, and we consider exchanging a different
point. The score of the best solution obtained
during this process is called the record and the
amount of decrease below record that we allow
during the process is called the deviation. This
approach is referred to as record-to-record im-
provement and is due to Dueck (1990). It may be
viewed as a deterministic variant of simulated
annealing. (We might have applied simulated an-
nealing or, alternatively, tabu search instead, but
Dueck’s approach seemed faster than simulated
annealing and easier to implement than tabu
search.) Our two-point exchange algorithm is
given in Table 1. We point out that as two-point
exchanges are performed it is possible for a path
in paths,,, to replace a path in paths,,, We
always keep the M paths with the highest team
score in paths,,,.

3.3. One-point movement

We now consider moving one point at a time
between paths. In particular, we try to move a
point { from its current location to another loca-
tion in front of a point on another path. We make
the move whenever it is feasible and increases the
team score. If no movement increases the team
score, then we consider the feasible movement
that decreases the team score by the least amount.
To obtain a candidate movement for a point and

Table 1

Outline of two-point exchange algorithm for the TOP

For j = the first to the last point in the first to the last path in paths,,, (A loop)
For i = the first to the last point in the first to last path in paths,,, (B loop)

If exchanging i and j is feasible and the team score increases, do the exchange and go to the A loop

Else

Set best exchange = feasible exchange with the highest team score

End B loop

If the team score of the best exchange > record — deviation, make the best exchange

End A loop
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then determine which move to make, we apply
the steps in Table 2.

We point out that although only one point is
moved at a time, this type of movement can still
change paths,,,. One point can be moved from
paths,,, to a path in paths,,,, and vice versa. We
can also move a point between paths in paths,,
and between paths in paths,,,. We consider all
of these movements in an effort to find the set of
paths with the largest team score.

3.4. Clean up

In order to shorten the length of each path in
paths,,,, we apply a 2-opt improvement proce-
dure (Lin, 1965). The hope is that by decreasing
the length of each path we have more opportuni-
ties to insert points from paths in paths onto
paths in paths

ntop
top*

3.5. Example

We illustrate two-point exchange, one-point
movement, and clean up in Fig. 1. In Fig. 1(a), we
provide the scores and locations of the points for
a 2-member TOP, where the number above a
point is the associated score. Fig. 1(b) shows an
intermediate solution, where the thick, bold lines
denote the paths in paths,,, (that is, the paths
1-6-9 and 1-7-5-9 with a team score of 19) and
the thin lines denote the paths in paths ., (that
is, the paths 1-2-3-9 and 1-8-4-9). In moving
from Fig. 1(b) to Fig. 1(c), we perform a one-point
movement: point 3 moves from a path in paths

ntop

Table 2
Outline of algorithm for one-point movement in the TOP

(that is, 1-2-3-9) to a path in paths,,, (that is,
1-6-9). In particular, point 3 is inserted in front
of point 6. In Fig. 1(c), two paths (1-3-6-9 and
1-7-5-9) have a combined score of 21 and com-
prise paths,,,. We now perform a 2-opt proce-
dure on these two paths and obtain 1-6-3-9 and
1-7-5-9. Next, we move point 4 before point 9
on the first of these paths to obtain 1-6-3-4-9,
This results in a team score of 23 in Fig. 1(d). We
now perform a two-point exchange by inserting
point 8 between points 1 and 7 and inserting
point 5 between 1 and 9 at the same time, and
this yields the solution shown in Fig. 1(e), which
has the highest score of all solutions produced by
our heuristic.

3.6. Reinitialization I

In the hope of finding a set of paths that yields
a larger team score, we remove k points with the
smallest scores on paths in paths,,, and insert
them onto paths in paths,,. As the iteration
count increases in our procedure, we increase the
value of & and remove more points from paths in
paths,,.

3.7. Reinitialization I

In this step, we remove k points from paths,,,
in a slightly different way. The k points with the
smallest ratio of score to insertion cost are re-
moved from paths in paths,,, and inserted in the
cheapest feasible way onto paths in paths,,.
Note that p is reduced to 2.5 since we want to

For i = the first to the last point in the T, ellipse (say / is in path q)
For j = the first to the last point in the first to last path (p) in paths,,, and paths,, (p # q)

(A loop)
(B loop)

If inserting i in the front of j on path p is feasible and the team score increases,

then make the movement and go to the A loop
Else

Set best movement = feasible movement with the highest team score

End B loop

If the team score of the best movement > record — deviation, then make the best movement

End A loop
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Fig. 1. Two-point exchange, one-point movement, and 2-opt improvement in the TOP heuristic.
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perturb the solution only slightly at this point.
Our complete, new heuristic for the TOP is shown
in Table 3.

4. Computational testing

In this section, we apply our new heuristic for
the TOP to a total of 353 test problems that we
generate for 2-member, 3-member, and 4-mem-
ber TOPs. We compare our results to those pro-
duced by a version of Tsiligirides’s stochastic al-
gorithm that we develop to solve the team orien-
teering problem. Both heuristics are coded in
FORTRAN and executed on a SUN 4 /370 work-
station. We perform all computations using real
precision (we do not round or truncate values)
and round the length of the final path to one
decimal place.

4.1. Generating test problems

As there are no test problems for the TOP
that have been published in the literature, we

Table 3
A New heuristic for the TOP

need to generate a set of problems so that we can
ascertain the effectiveness of our new heuristic.
The easiest way to generate a test problem is to
take a one-member OP and divide the T, value
by the number of team members. Thus, each
team member has the same time limit, that is,
T,.ax/M. In the three left-most columns of Table
4, we present information about the test prob-
lems that we generated for the 2-member, 3-
member, and 4-member TOPs, respectively. All
of these test problems are included in the disser-
tation by Chao (1993).

4.2. Generalizing Tsiligirides’s stochastic algorithm
to solve the TOP

We modify Tsiligirides’s stochastic algorithm
for the OP (Tsiligirides, 1984) so that it can solve
the TOP. We develop a sequential version and a
concurrent version of his algorithm. In our se-
quential version for the TOP, one path is con-
structed at a time, where each point i that is not
yet included on the current path is assigned a
desirability measure denoted by A;. The desir-

Step 1. Initialization
Perform initialization
Set record = team score of the initial solution
Set p=35
Set deviation = p% X record
Step 2. Improvement
Fork=12,...,K
Fori=12,...,1
Perform two-point exchange
Perform one-point movement
Perform clean up
If no movement has been made above, end I loop
If a new better solution has been obtained, then
set record = score of new best solution
set deviation = p% X record
End I loop
If no new record is obtained in 5 iterations, then
go to Step 3
Perform Reinitialization I (free k points)
End K loop

(K loop)
(I loop)

Step 3. Reset p = 2.5, perform Reinitialization II (free k points, k is the stopping value in the K loop) and redo Step 2 once more
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ability measure is given by

4
A;=(8i/Cipast) > (2)
where s; is the score associated with point i and

Cinas 18 the distance from the last point on the
current path to point i. The four points with the

largest desirability measures are then selected
and their measures are normalized according to

A;
Pi=——, fori=12,34. (3)

X A4,

t=1

«®

4

10

9 Team Score = 1066

0

20

:©
@

2l

Fig. 2. Solution produced by TOH to a 4-member test problem.
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Point i is randomly selected with probability P, as
the new last point on the current path. Points
continue to be placed on the current path until
the remaining time is so small that no points can
be feasibly inserted onto the path. We continue
constructing new paths using the remaining unas-
signed points in this way until M paths are ob-
tained.

In the concurrent version of Tsiligirides’s algo-
rithm that we develop, the M paths are con-
structed simultaneously. In the k-th step, our
procedure seeks the k-th point for each of the M
paths, that is, the k-th point of the first path is
found using the above stochastic version, then the
k-th point of the second path is determined, and
so on. When a path is full (that is, we cannot
insert any more points onto the path), our proce-
dure skips that path and searches over all paths
that are not yet full. Our procedure stops when
all M paths are full.

In Tsiligirides’s heuristic for the OP
(Tsiligirides, 1984), 3,000 solutions are generated
for each problem. For the TOP, we generate
1,500 solutions using our sequential approach,
and 1,500 solutions using our concurrent ap-
proach. The solution among all 3,000 solutions
with the highest team score is chosen as the final
solution. The final solution is then improved by
applying a 2-opt procedure to each path and
inserting as many points as possible onto the
resulting paths.

4.3. Results on test problems

We now compare the results produced by our
heuristic to the best results produced by the
sequential or concurrent versions of Tsiligirides’s
stochastic algorithm to the 353 team orienteering
problems that we developed. After experimenting
with different values for K and I in our heuristic,
we found that K =50 and I =10 produce good
solutions in a reasonable amount of CPU time;
these are the values we used to generate the
results in Table 4. In Table 4, the first seven rows
present results for 2-member problems, the next
seven rows present results for 3-member prob-
lems, and the last seven rows present results for
4-member problems. In Fig. 2, we show the solu-

tion produced by our new heuristic to a 4-mem-
ber test problem. Solutions to all 353 test prob-
lems are displayed in Chao (1993).

For the 2-member TOP, there are 124 prob-
lems and TOH produces scores for 76 problems
that are better than the scores produced by TSA,
and 12 scores that are worse than scores pro-
duced by TSA. For the 3-member TOP, there are
118 problems and TOH produces scores for 75
problems that are better than the scores pro-
duced by TSA, and 3 scores that are worse than
the scores produced by TSA. For the 4-member
TOP, there are 111 problems and TOH produces
scores for 59 problems that are better than the
scores produced by TSA, and 9 scores that are
worse than the scores produced by TSA. Over all
353 feasible test problems, our new team orien-
teering heuristic produces better scores than our
version of Tsiligirides’s stochastic algorithm on
60% (that is, 210/353) of the test problems. Our
new heuristic produces worse scores on 7% (that
is, 24/353) of the test problems, and the same
score on 33% (119/353) of the test problems.

5. Conclusions

In this paper, we have presented a heuristic
for the team orienteering problem. The heuristic
is based on the notion of record-to-record im-
provement. We have applied our heuristic and a
competing heuristic to 353 problems ranging in
size from 21 to 102 points. The new heuristic has
been shown to be computationally efficient and it
consistently outperforms its competition.
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