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Abstract 

In the team orienteering problem, start and end points are specified along with other locations which have 
associated scores. Given a fixed amount of time for each of the M members of the team, the goal is to determine M 
paths from the start point to the end point through a subset of locations in order to maximize the total score. In this 
paper, a fast and effective heuristic is presented and tested on 353 problems ranging in size from 21 to 102 points. 
The computational results are presented in detail. 

Keywords: Vehicle routing problem; Heuristic search 

1. Introduction 

Orienteering is an outdoor  sport usually played 
in a mountainous or heavily forested area. Armed  
with compass and map, a competi tor  starts at a 
specified control point, tries to visit as many 
other control points as possible within a pre- 
scribed time limit, and returns to a specified 
control point. Each control point has an associ- 
ated score, so that the objective of orienteering is 
to maximize the total score. A competi tor  who 
arrives at the finish point after time has expired is 
disqualified, and the eligible competi tor  with the 
highest score is declared the winner. Since time is 
limited, a competi tor  may not be able to visit all 
control points. A competi tor  has to select a sub- 
set of  control points to visit that will maximize 
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total score subject to the time restriction. This is 
known as the Single-Competitor Orienteering 
Problem (OP). 

Team orienteering extends the single-competi- 
tor version of the sport. A team consisting of 
several competitors (say, 2, 3, or 4 members)  
starts at the same point. Each member  of the 
team tries to visit as many control points as 
possible within a prescribed time limit, and then 
ends at the finish point. Once a team member  
visits a point and is awarded the associated score, 
no other  team member  can be awarded a score 
for visiting the same point. Thus, each member  of  
a team has to select a subset of control points to 
visit so that there is minimal overlap in the points 
visited by each member  of the team, the time 
limit is not violated, and the total team score is 
maximized. We call this the Team Orienteering 
Problem and denote it by TOP. 
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The TOP can be modeled as a multi-level 
optimization problem. At the first level, we need 
to select a subset of points for the team to visit. 
At the second level, we need to assign points to 
each member of the team. At the third level, we 
need to construct a path through the points as- 
signed to each member of the team. We point out 
that the single-competitor version of this problem 
has been shown to be NP-hard (Golden, Levy, 
and Vohra, 1987), so the TOP is at least as 
difficult. 

We now describe a network optimization rep- 
resentation of the TOP. Let V be the set of 
control points and E be the set of edges between 
points in 1,1. Then G = {I1, E} is a complete 
graph. Each point i in V has a score s i > 0 
associated with it. The start point is vertex 1 and 
the finish point is vertex n, and these points each 
have a score of 0. Each edge in E has a symmet- 
ric, nonnegative cost cij associated with it, where 
cij is the distance between point i and point j, or 
the cost of traveling between the two points. For 
the M-member TOP, we need to find a set of M 
paths, where each path starts from point 1 and 
finishes at point n, that maximizes total team 
score. Each point's associated score is only 
awarded on the first visit by a team member and 
the total time taken to visit the points on each of 
the M paths cannot exceed the specified limit, 
denoted by Tma ~. We point out that real-world 
orienteering competitions involve a variety of 
complications (e.g., stochastic travel times) not 
mentioned in this paper or in the cited literature. 
In the operations research literature, the orien- 
teering problem denotes a class of routing prob- 
lems related to the traveling salesman problem. 

We note that the orienteering problem de- 
scribed by Chao, Golden, and Wasil (1996) can be 
considered a special case of the TOP, that is, the 
OP is a one-member TOP. In addition, many of 
the OP applications can be extended to team 
orienteering applications. For example, the home 
fuel delivery model used by Golden, Assad, and 
Dahl (1984) can be extended in the following way. 
Treating each customer's urgency for fuel as a 
score, each vehicle in the fleet would be assigned 
a subset of customers to service and a route 
would be constructed for each vehicle. The objec- 

tive would be to maximize the total score amassed 
by the fleet. In a recent paper, Butt and Cavalier 
(1992) model the recruiting of college football 
players as a TOP. Suppose there are many high 
schools surrounding a college that a recruiter 
would like to visit in order to scout members of 
the football team. The recruiter needs to leave 
and return to the college campus within the same 
day and the recruiter can only meet with the high 
school students during their class time (this estab- 
lishes the maximum time limit Tm~x). There  is a 
score associated with each high school that mea- 
sures the potential 'benefit '  to the college of 
visiting the high school. The number of high 
schools is so large that the recruiter cannot visit 
all schools within a limited time period (say, one 
day). If the recruiter has M days to visit the high 
schools, then the recruiter would like to find a set 
of M paths that maximizes the total potential for 
recruiting football players, where the total time 
taken by the recruiter to visit high schools on 
each of the M paths cannot exceed Tm~ x. The 
TOP can also be used to model a variety of 
vehicle routing problems in which only a subset of 
the customers can be visited on a given day. 

In the next section, we mention an unpub- 
lished solution approach for the TOP developed 
by Butt and Cavalier. In the third section, we 
develop a new heuristic for the TOP. In the 
fourth section, we generate 353 test problems, 
present computational results produced by our 
new heuristic, and compare these results to those 
produced by a stochastic algorithm for the team 
orienteering problem. In the final section, we 
present our conclusions. 

2. Review of solution approaches to the TOP 

Although the original orienteering problem has 
attracted the attention of many researchers, the 
TOP has received no attention in the open litera- 
ture. We are aware of only one unpublished 
paper - the recent work by Butt and Cavalier 
(1992) - in which the TOP is solved. In their 
version of the TOP, the start and finish points are 
the same. They apply their heuristic to small 
problems with less than 15 points and compare 



466 I-M. Chao et al. / European Journal of Operational Research 88 (1996) 464-474 

the results produced by their heuristic against the 
optimal results produced by a mathematical pro- 
gramming model that they formulated and solved. 
Based upon the performance of the heuristic on 
the small problems, Butt and Cavalier conclude 
that their method should work well on large 
problems, but they do not apply it to large-size 
TOPs. In addition, Butt and Cavalier do not 
publish test problem data in their paper. 

In contrast to the TOP, the orienteering prob- 
lem has been widely studied and a variety of 
heuristics have been developed and tested (see 
Chao (1993) and Chao, Golden, and Wasil (1996) 
for details). In order to evaluate the performance 
of our new TOP heuristic, we modify a standard 
OP heuristic so that it will solve the TOP. Since 
Tsiligirides's stochastic algorithm for the OP 
(Tsiligirides, 1984; Chao, Golden, and Wasil, 
1996) can be easily modified to solve the TOP, we 
apply his algorithm and code two different ver- 
sions. This is discussed in more detail in Section 
4. 

3. A new heuristic for solving the TOP 

The TOP is more difficult to solve than the OP 
since we must take into account the performance 
of the entire team and not just one member as in 
the OP. In this section, we describe a new heuris- 
tic for the TOP that is easy to understand and 
easy to implement, and that produces high-qual- 
ity solutions in a short amount of computation 
time. Our heuristic consists of two steps: initial- 
ization and improvement. We initialize the proce- 
dure by constructing an ellipse over the entire set 
of points by using the start and finish points as 
the two loci of the ellipse and the time limit Tma x 
as the length of the major axis. We call this the 
Tma x ellipse. In generating a path, we consider 
only the points that are within the ellipse, since 
any path that contains a point outside the ellipse 
will violate the Tma x limit. We want to generate 
an initial solution quickly and then rely on the 
improvement step to find a solution with a large 
team score. In the improvement step, we allow 
the team score to decrease in the hope of ulti- 
mately finding a bet ter  solution. 

3.1. Initialization 

Initially, L = min(5, N )  points, where N is the 
number of points within the ellipse, are chosen as 
candidate points to assign to each of the M paths 
(note that M = 2, 3, or 4 in our computational 
experiments). The L points are chosen to be the 
points furthest from the start and finish points. M 
of the L points are selected as the first points 
assigned to the M paths. Then, the remaining 
points are inserted in a greedy way (using cheap- 
est insertion) onto the paths until each of the M 
paths is full (a path is full when inserting an 
additional point onto the path violates the time 
limit constraint). If unassigned points remain, we 
continue constructing new paths with these points 
until all points have been assigned. We then 
select the M paths with the highest scores as the 
initial solution and the sum of the scores of these 
paths is the team score. 

For a problem, (~t) different solutions are pos- 
sible when L > M. If L < M, an optimal solution 
can be obtained easily. (Note that for the values 
of M considered, L < M implies L = N.) In this 
case, there are at most as many points in the Tma x 
ellipse as there are team members, so that mem- 
bers can visit at most one point in an optimal 
solution. Among the (~t) solutions, the one with 
the highest team score is selected as our initial 
solution. We denote the set of M paths with the 
highest team score as pathsto p (these are the 
paths that form our initial solution) and the set of 
all remaining paths is denoted by pathsntop. 

The above initialization procedure assumes 
that points are located in two-dimensional Eu- 
clidean space. This is the case for all of the test 
problems considered in this paper. When this is 
not the case, starting solutions can be constructed 
in other  ways and the improvement step may then 
be applied. 

3.2. Two-point exchange 

Using the starting solution produced in the 
initialization step, we try to improve this solution 
by performing a two-point exchange. A point i is 
moved from a path in pathsntop and inserted onto 
a path in pathstop, and a point j is moved from a 
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path in pathsto p and inserted onto a path in 
pathsntop. T h e  two points are exchanged simulta- 
neously and the insertions are performed in the 
cheapest  way. If  no feasible insertion is possible 
in pathSntop (that is, all insertions violate the Tma ~ 
constraint), then a new path that contains point j 
is generated.  This path contains point j along 
with the start and finish points. 

Let  L ( p )  denote the length of path  p. The 
feasibility of the path that results when point i is 
inserted onto path p and point j is removed from 
path p can be checked by examining the follow- 
ing expression 

L ( p )  - ( cj,lj  + c j,j - c j,i j )  

+ min {ci, k + Ci,pk -- ck,pk}, (1) 
k visited in p, 

k4-l,j 

where pj  is the point that precedes point j on 
path p, l~' is the point that follows point j on path  
p,  and p k  is the point that precedes point k on 
path p after point j has been removed from the 
path. In (1), the term after the first minus sign is 
the savings that results from removing point j 
and the term after the second plus sign is the cost 
incurred by inserting point i onto path p. If  the 
distance that results from the calculation in (1) is 
less than or equal to Tmax, then the insertion is 
feasible; otherwise, the insertion is infeasible. 

For each point in pathstop, candidate ex- 
changes are considered one at a time. Whenever  
a candidate exchange leads to a higher team 
score, the exchange is performed immediately, 
and all other exchanges are ignored. Whenever  
there is no candidate exchange for a point that 

increases the team score, we consider exchanges 
that decrease the team score by a small amount.  
If  the decrease yields a score that is above a 
threshold value, then we perform it; otherwise, 
the point remains in its current position on the 
path, and we consider exchanging a different 
point. The score of the best solution obtained 
during this process is called the record and the 
amount of decrease below record that we allow 
during the process is called the deviation. This 
approach is referred to as record-to-record im- 
provement  and is due to Dueck (1990). It may be 
viewed as a deterministic variant of simulated 
annealing. (We might have applied simulated an- 
nealing or, alternatively, tabu search instead, but 
Dueck's  approach seemed faster than simulated 
annealing and easier to implement  than tabu 
search.) Our two-point exchange algorithm is 
given in Table 1. We point out that as two-point 
exchanges are performed it is possible for a path 
in pathsntop to replace a path in pathsto p. We 
always keep the M paths with the highest team 
score in pathsto p. 

3.3. One-point movemen t  

We now consider moving one point at a time 
between paths. In particular, we try to move a 
point i from its current location to another  loca- 
tion in front of a point on another  path. We make 
the move whenever it is feasible and increases the 
team score. If  no movement  increases the team 
score, then we consider the feasible movement  
that decreases the team score by the least amount.  
To obtain a candidate movement  for a point and 

Table 1 
Outline of two-point exchange algorithm for the TOP 

For j = the first to the last point in the first to the last path in pathsto v 
For i = the first to the last point in the first to last path in pathsntop 

If exchanging i and j is feasible and the team score increases, do the exchange and go to the A loop 
Else 
Set best exchange = feasible exchange with the highest team score 

End B loop 
If the team score of the best exchange > record - deviation, make the best exchange 

End A loop 

(A loop) 
(B loop) 
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then determine which move to make, we apply 
the steps in Table 2. 

We point out that although only one point is 
moved at a time, this type of movement can still 
change pathsto p. One point can be moved from 
pathsto p to a path in pathsntop and vice versa. We 
can also move a point between paths in pathsto p 
and between paths in pathsntop. We consider all 
of  these movements in an effort to find the set of 
paths with the largest team score. 

3. 4. Clean up 

In order  to shorten the length of each path in 
pathstop, we apply a 2-opt improvement proce- 
dure (Lin, 1965). The hope is that by decreasing 
the length of each path we have more opportuni- 
ties to insert points from paths in pathsntop onto 
paths in pathsto p. 

3.5. Example 

We illustrate two-point exchange, one-point 
movement,  and clean up in Fig. 1. In Fig. l(a), we 
provide the scores and locations of the points for 
a 2-member TOP,  where the number above a 
point is the associated score. Fig. l(b) shows an 
intermediate solution, where the thick, bold lines 
denote the paths in pathsto p (that is, the paths 
1 - 6 - 9  and 1 - 7 - 5 - 9  with a team score of 19) and 
the thin lines denote the paths in pathsntop (that 
is, the paths 1 - 2 - 3 - 9  and 1 -8 -4 -9 ) .  In moving 
from Fig. l(b) to Fig. l(c), we perform a one-point 
movement: point 3 moves from a path in pathsntop 

(that is, 1 - 2 - 3 - 9 )  to a path in pathsto p (that is, 
1-6-9) .  In particular, point 3 is inserted in front 
of point 6. In Fig. 1(c), two paths ( 1 - 3 - 6 - 9  and 
1 - 7 - 5 - 9 )  have a combined score of 21 and com- 
prise pathsto p. We now perform a 2-opt proce- 
dure on these two paths and obtain 1 - 6 - 3 - 9  and 
1 - 7 - 5 - 9 .  Next, we move point 4 before point 9 
on the first of these paths to obtain 1 - 6 - 3 - 4 - 9 .  
This results in a team score of 23 in Fig. l(d). We 
now perform a two-point exchange by inserting 
point 8 between points 1 and 7 and inserting 
point 5 between 1 and 9 at the same time, and 
this yields the solution shown in Fig. l(e), which 
has the highest score of all solutions produced by 
our heuristic. 

3.6. Reinitialization I 

In the hope of finding a set of paths that yields 
a larger team score, we remove k points with the 
smallest scores on paths in pathsto p and insert 
them onto paths in pathsntop. As the iteration 
count increases in our procedure,  we increase the 
value of k and remove more points from paths in 
pathsto p. 

3. 7. Reinitialization H 

In this step, we remove k points from pathsto p 
in a slightly different way. The k points with the 
smallest ratio of score to insertion cost are re- 
moved from paths in pathsto p and inserted in the 
cheapest feasible way onto paths in pathsntop. 
Note that p is reduced to 2.5 since we want to 

Table 2 
Outl ine of  algorithm for one-point  movement  in the TOP 

For i = the  first to the  last point in the Tma x ellipse (say i is in path q) 
For  j = the  first to the last point in the  first to last path (p )  in pathsto p and pathantop (p ~ q) 

If inserting i in the front of  j on path p is feasible and the  team score increases, 
then  make the  movement  and go to the A loop 
Else 
Set best movement  ffi feasible movement  with the highest  team score 

End  B loop 
If the  team score of the  best movement  > record - deviation, then make the  best movement  

End  A loop 

(A loop) 
(B loop) 
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Fig. 1. Two-point exchange, one-point movement, and 2-opt improvement in the TOP heuristic. 
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perturb the solution only slightly at this point. 
Our complete, new heuristic for the TOP is shown 
in Table 3. 

4. Computational testing 

In this section, we apply our new heuristic for 
the TOP to a total of 353 test problems that we 
generate for 2-member, 3-member, and 4-mem- 
ber TOPs. We compare our results to those pro- 
duced by a version of Tsiligirides's stochastic al- 
gorithm that we develop to solve the team orien- 
teering problem. Both heuristics are coded in 
F O R T R A N  and executed on a SUN 4/370  work- 
station. We perform all computations using real 
precision (we do not round or truncate values) 
and round the length of the final path to one 
decimal place. 

4.1. Generating test problems 

As there are no test problems for the TOP 
that have been published in the literature, we 

need to generate a set of problems so that we can 
ascertain the effectiveness of our new heuristic. 
The easiest way to generate a test problem is to 
take a one-member OP and divide the Tm~ , value 
by the number of team members. Thus, each 
team member has the same time limit, that is, 
Tmax/M. In the three left-most columns of Table 
4, we present information about the test prob- 
lems that we generated for the 2-member, 3- 
member, and 4-member TOPs, respectively. All 
of these test problems are included in the disser- 
tation by Chao (1993). 

4.2. Generalizing Tsiligirides's stochastic algorithm 
to solve the TOP 

We modify Tsiligirides's stochastic algorithm 
for the OP (Tsiligirides, 1984) so that it can solve 
the TOP. We develop a sequential version and a 
concurrent version of his algorithm. In our se- 
quential version for the TOP, one path is con- 
structed at a time, where each point i that is not 
yet included on the current path is assigned a 
desirability measure denoted by A r The desir- 

Table 3 
A New heuristic for the TOP 

Step 1. Initialization 
Perform initialization 
Set record = team score of the initial solution 
Set p = 5 
Set deviation = p %  x record 

Step 2. Improvement 
For k = 1,2 . . . . .  K (K loop) 

For i = 1,2 . . . . .  I ( I  loop) 
Perform two-point exchange 
Perform one-point movement 
Perform clean up 
If no movement has been made above, end I loop 
If a new better solution has been obtained, then 

set record = score of new best solution 
set deviation = p %  × record 

End I loop 
If no new record is obtained in 5 iterations, then 

go to Step 3 
Perform Reinitialization I (free k points) 

End K loop 
Step 3. Reset p = 2.5, perform Reinitialization II (free k points, k is the stopping value in the K loop) and redo Step 2 once more 
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ability measure is given by largest desirability measures are then selected 
and their measures are normalized according to 

A i = (Si//Ci,last) 4, (2) 
A i  

where s i is the score associated with point i and Pi = , , for i = 1,2,3,4. (3) 
Ci,last is the distance from the last point on the Y ' A t  

current path to point i. The four points with the t=% 
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Fig. 2. Solution produced by TOH to a 4-member test problem. 



I-M. Chap et al. / European Journal of Operational Research 88 (1996) 464-474 473 

Point i is randomly selected with probability P~ as 
the new last point on the current path. Points 
continue to be placed on the current path until 
the remaining time is so small that no points can 
be feasibly inserted onto the path. We continue 
constructing new paths using the remaining unas- 
signed points in this way until M paths are ob- 
tained. 

In the concurrent version of Tsiligirides's algo- 
rithm that we develop, the M paths are con- 
structed simultaneously. In the k-th step, our 
procedure seeks the k-th point for each of the M 
paths, that is, the k-th point of the first path is 
found using the above stochastic version, then the 
k-th point of the second path is determined, and 
so on. When a path is full (that is, we cannot 
insert any more points onto the path), our proce- 
dure skips that path and searches over all paths 
that are not yet full. Our procedure stops when 
all M paths are full. 

In Tsil igir ides 's  heur is t ic  for  the OP  
(Tsiligirides, 1984), 3,000 solutions are generated 
for each problem. For the TOP,  we generate 
1,500 solutions using our sequential approach, 
and 1,500 solutions using our concurrent ap- 
proach. The solution among all 3,000 solutions 
with the highest team score is chosen as the final 
solution. The final solution is then improved by 
applying a 2-opt procedure to each path and 
inserting as many points as possible onto the 
resulting paths. 

4.3. Results on test problems 

We now compare the results produced by our 
heuristic to the best results produced by the 
sequential or concurrent versions of Tsiligirides's 
stochastic algorithm to the 353 team orienteering 
problems that we developed. After experimenting 
with different values for K and I in our heuristic, 
we found that K = 50 and I = 10 produce good 
solutions in a reasonable amount of CPU time; 
these are the values we used to generate the 
results in Table 4. In Table 4, the first seven rows 
present results for 2-member problems, the next 
seven rows present results for 3-member prob- 
lems, and the last seven rows present results for 
4-member problems. In Fig. 2, we show the solu- 

tion produced by our new heuristic to a 4-mem- 
ber test problem. Solutions to all 353 test prob- 
lems are displayed in Chap (1993). 

For the 2-member TOP, there are 124 prob- 
lems and T O H  produces scores for 76 problems 
that are better than the scores produced by TSA, 
and 12 scores that are worse than scores pro- 
duced by TSA. For the 3-member TOP, there are 
118 problems and T O H  produces scores for 75 
problems that are better  than the scores pro- 
duced by TSA, and 3 scores that are worse than 
the scores produced by TSA. For the 4-member 
TOP, there are 111 problems and T O H  produces 
scores for 59 problems that are better  than the 
scores produced by TSA, and 9 scores that are 
worse than the scores produced by TSA. Over all 
353 feasible test problems, our new team orien- 
teering heuristic produces better  scores than our 
version of Tsiligirides's stochastic algorithm on 
60% (that is, 210/353) of the test problems. Our 
new heuristic produces worse scores on 7% (that 
is, 24/353) of the test problems, and the same 
score on 33% (119/353) of the test problems. 

5. Conclusions 

In this paper, we have presented a heuristic 
for the team orienteering problem. The heuristic 
is based on the notion of record-to-record im- 
provement. We have applied our heuristic and a 
competing heuristic to 353 problems ranging in 
size from 21 to 102 points. The new heuristic has 
been shown to be computationally efficient and it 
consistently outperforms its competition. 
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