1. Why Are Some Problems Difficult to Solve?

Our problems are man-made;
therefore they may be solved by man.

John F. Kennedy, speech, June 10, 1963

At the risk of starting with a tautology, real-world problems are difficult to
solve, and they are difficult for several reasons:

e The number of possible solutions in the search space is so large as to forbid
an exhaustive search for the best answer.

e The problem is so complicated that just to facilitate any answer at all,
we have to use such simplified models of the problem that any result is
essentially useless.

o The evaluation function that describes the quality of any proposed so-
lution is noisy or varies with time, thereby requiring not just a single
solution but an entire series of solutions.

e The possible solutions are so heavily constrained that constructing even
one feasible answer is difficult, let alone searching for an optimum solution.

e The person solving the problem is inadequately prepared or imagines some
psychological barrier that prevents them from discovering a solution.

Naturally, this list could be extended to include many other possible obsta-
cles. For example, we could include noise associated with our observations and
measurements, uncertainly about given information, and the difficulties posed
by problems that have multiple and possibly conflicting objectives (which may
require a set of solutions rather than a single solution). The above list, however,
is sufficient for now. Each of these are problems in their own right. To solve
a problem, we have to understand the problem, so let’s discuss each of these
issues in turn and identify their inherent details.

1.1 The size of the search space

One of the elementary problems in logic is the Boolean satisfiability problem
(SAT). The task is to make a compound statement of Boolean variables evaluate
to TRUE. For example, consider the following problem of 100 variables given
in conjunctive normal form:
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The challenge is to find the truth assignment for each variable z;, for all i =
1,...,100 such that F(x) = TRUE. We can use 1 and 0 as synonyms for TRUE
and FALSE, and note that Z; here is the negation of z; (i.e., if z; were TRUE
or 1, then Z; would be FALSE or 0).

Regardless of the problem being posed, it’s always useful to consider the
space of possible solutions. Here, any binary string of length 100 constitutes a
potential solution to the problem. We have two choices for each variable, and
taken over 100 variables, this generates 2!% possibilities. Thus the size of the
search space S is S| = 21 ~ 10%. This is a huge number! Trying out all
of these alternatives is out of the question. If we had a computer that could
test 1000 strings per second and could have started using this computer at the
beginning of time itself, 15 billion years ago right at the Big Bang, we’d have
examined fewer than one percent of all the possibilities by now!

What’s more, the choice of which evaluation function to use isn’t very clear.
What we’d like is for the evaluation function to give us some guidance on the
quality of the proposed solution. Solutions that are closer to the right answer
should yield better evaluations than those that are farther away. But here, all
we have to operate on is F(x) which can either evaluate to TRUE or FALSE.
If we try out a string x and F(x) returns TRUE then we're done: that’s the
answer. But what if F'(x) returns FALSE? Then what? Furthermore, almost
every possible string of 0s and 1s that we could try would likely evaluate to
FALSE, so how could we distinguish between “better” and “worse” potential
solutions? If we were using an enumerative search we wouldn’t care because we’d
simply proceed through each possibility until we found something interesting.
But if we want the evaluation function to help us find the best solutions faster
than enumeration, we need more than just “right” or “wrong.” The way we
could accomplish that for the SAT problem isn’t clear immediately.

Some problems seem easier than SAT problems because they suggest a
possible evaluation function naturally. Even so, the size of the search space can
still be enormous. For example, consider a traveling salesman problem (TSP).
Conceptually, it’s very simple: the traveling salesman must visit every city in
his territory exactly once and then return home covering the shortest distance.
Some closely related problems require slightly different criteria, such as finding
a tour of the cities that yields minimum traveling time, or minimum fuel cost,
or a number of other possibilities, but the idea is the same. Given the cost of
traveling between each pair of cities, how should the salesman plan his itinerary
to achieve a minimum cost tour?

Figure 1.1 illustrates a simple symmetric 20-city TSP where the distance
between each pair of cities ¢ and ;7 is the same in either direction. That is,
dist(i,7) = dist(j,1). The actual distances aren’t marked on the figure, but we
could assume this is the case. Alternatively, we could face an asymmetric TSP
where dist(i,j) # dist(j,1) for some ¢ and j. These two classes of TSP present
different obstacles for finding minimum cost paths.
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Fig. 1.1. A sample TSP. Textbook TSPs usually allow paths from every city to every other
cities, but real-world problems don’t always afford such opportunities.

So then, what is the search space for the TSP? One possibility would be
to view it as the set of permutations of n cities. Any permutation of n cities
yields an ordered list that defines the sequence of cities to be visited, starting at
the salesman’s home base, and continuing to the last location before returning
home. The optimum solution is a permutation that yields the minimum cost
tour. Note that tours such as:

2-..-6-15-3-11-19-17,
15-3-11-19-17-2~ ... -6,
3-11-19-17-2~ ... -6 - 15, etc.

are identical because the circuit that each one generates is exactly the same
regardless of the starting city, and there are n tours like that for any n-city TSP.
It’s easy to see then that every tour can be represented in 2n different ways (for
a symmetrical TSP). And since there are n! ways to permute n» numbers, the
size of the search space is then |S| = n!/(2n) = (n — 1)!/2.

Again, this is a huge number! For any n > 6, the number of possible solutions
to the TSP with n cities is larger than the number of possible solutions to the
SAT problem with n variables. Furthermore, the difference between the sizes
of these two search spaces increases very quickly with increasing n. For n = 6,
there are 5!/2 = 60 different solutions to the TSP and 2° = 64 solutions to a
SAT. But for n = 7 these numbers are 360 and 128, respectively.

To see the maddening rate of growth of (n — 1)!/2, consider the following
numbers:

e A 10-city TSP has about 181,000 possible solutions.
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e A 20-city TSP has about 10,000,000,000,000,000 possible solutions.

e A 50-city TSP has about 100,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000 possible solutions.

There are only 1,000,000,000,000,000,000,000 liters of water on the planet, so a
50-city TSP has an unimaginably large search space. Literally, it’s so large that
as humans, we simply can’t conceive of sets with this many elements.

Even though the TSP has an incredibly large search space, the evaluation
function that we might use to assess the quality of any particular tour of cities
is much more straightforward than what we saw for the SAT. Here, we can refer
to a table that would indicate all of the distances between each pair of cities,
and after n addition operations we could calculate the distance of any candidate
tour and use this to evaluate its merit. For example, the cost of the tour

15-3-11-19-17-2- ... -6
is
cost = dist(15,3) + dist(3, 11) + dist(11,19) + ... + dist(6,15).
We might hope that this, more natural, evaluation function would give us an
edge in finding useful solutions to the TSP despite the size of the search space.
Let’s consider a third example — a particular nonlinear programming prob-
lem (NLP). It’s a difficult problem that has been studied in the scientific lit-

erature and no traditional optimization method has given a satisfactory result.
The problem [254] is to maximize the function:!
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The function G2 is nonlinear and its global maximum is unknown, but it
lies somewhere near the origin. The optimization problem poses one nonlinear
constraint and one linear constraint (the latter one is inactive near the origin).

What’s the size of the search space now? In a sense, it depends on the
dimensionality of the problem — the number of variables. When treated as
a purely mathematical problem, with n variables, each dimension can contain
an infinity of possible values, so we have an infinitely large space — maybe
even several degrees of infinity. But on a computer, everything is digital and
finite, so if we were going to implement some sort of algorithm to find the
optimum of G2, we’d have to consider the available computing precision. If
our precision guaranteed six decimal places, each variable could then take on

!'We're preserving the notation G2 used for this function in [319]. It’s the second function
in an 11-function testbed for nonlinear programming problems.
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10,000,000 different values. Thus, the size of the search space would be |S| =
10,000,000 = 10™. That number is much much larger than the number of
solutions for the TSP. Even for n = 50 there are 103 solutions to the NLP
with only six decimal places of precision. Most computers could give twice this
precision.

08
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Fig. 1.2. The graph of function G2 for n = 2. Infeasible solutions were assigned a value of
Zero.

What about the evaluation function? How can we measure the quality of
alternative solutions? One idea would be to use the function G2 itself as an
evaluation function. Those solutions that yield higher values of G2 would be
judged as being better than those that yield lower values. But there are some
difficulties in this regard because, as illustrated in figure 1.2, there are infeasi-
ble regions, and all of the infeasible points were assigned a value of zero. The
interesting boundary between feasible and infeasible regions is defined by the
equation J[%,x; = 0.75, and the optimal solution lies on (or close to) this
boundary. Searching boundaries of a feasible part of the search space isn’t easy.
It requires specialized operators that are tailored for just this purpose, on just
this problem. This presents an additional level of difficulty that we didn’t see in
the SAT or TSP (although for a TSP that didn’t allow transit between all pos-
sible pairs of cities, some permutations would also be infeasible). Even without
this additional wrinkle, it’s evident that problems that seem simple at first can
offer significant challenges simply because of the number of alternative solutions.
The means for devising ways to assess these solutions isn’t always clear.
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1.2 Modeling the problem

Every time we solve a problem we must realize that we are in reality only finding
the solution to a model of the problem. All models are a simplification of the
real world, otherwise they would be as complex and unwieldy as the natural
setting itself. The process of problem solving consists of two separate general
steps: (1) creating a model of the problem, and (2) using that model to generate
a solution:

Problem = Model = Solution.

The “solution” is only a solution in terms of the model. If our model has a
high degree of fidelity, we can have more confidence that our solution will be
meaningful. In contrast, if the model has too many unfulfilled assumptions and
rough approximations, the solution may be meaningless, or worse.

The SAT, TSP, and NLP are three canonical forms of models that can be
applied in many different settings. For example, suppose a factory produces
cars in various colors where there are n colors altogether. The task is to find
an optimum production schedule that will minimize the total cost of painting
the cars. Note, however, that each machine involved in the production line has
to be switched from one color to another between jobs, and the cost of such a
switch (called a changeover) depends on the two colors involved and their order.
The cost of switching from yellow to black might be 30 units. This might be
measured in dollars, minutes, or by some other reasonable standard. The cost
of switching back from black to yellow might be 80 units.? The cost of going
from yellow to green might be 35 units, and so forth. To minimize costs, we
have to find a sequence of jobs that meets all of the production requirements
for the number of cars of each color, in a timely fashion, while still keeping the
costs of the operation as low as possible. This might be viewed in terms of a
TSP, where each city is now a job that corresponds to painting a certain car
with a particular color and the distance between cities corresponds to the cost
of changing jobs. Here, the TSP would be asymmetric.

Consider the following scenario that illustrates how simplifications are in-
herent to modeling. Suppose a company has n warehouses that store paper
supplies in reams. These supplies are to be delivered to k£ distribution centers.
The warehouses and distribution centers can be viewed as sources and destina-
tions, respectively. Every possible delivery route between a warehouse ¢ and a
distribution center j has a measurable transportation cost, which is determined
by a function f;;. The shape of this function depends on a variety of factors
including the distance between the warehouse and the distribution center, the
quality of the road, the traffic density, the number of required stops, the average
speed limit, and so forth. For example, the transportation cost function between
warehouse 2 and distribution center 3 might be defined as:

2Note the asymmetry here: the costs of switching between two colors need not be the same.
Switching from yellow to black isn’t usually as expensive as the obverse switch.
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0 if =0
Fan(a) = 4+333z if0<z<3
BT 195 if3<z<6

05+ 10z if 6 <z,

where z refers to the quantity of supplies transported from 2 to 3 (figure 1.3
displays the graph of the function fa3).3
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Fig. 1.3. An example transportation cost function for a given source and a given destination

Even though this function looks a bit unconventional, the justification for
using it in the model of our transportation problem might be quite straightfor-
ward. If there’s no delivery, the cost is zero, of course. If up to three reams of
paper are transported we can use a special shipping container. This incurs an
overhead cost of four units for the container and an additional cost of 3.33 units
per ream. So the cost for this case increases linearly. However, if we transport
more than three reams but not more than six, we can use a special wire mesh
box. In this case, the cost is a flat 19.5 units, regardless of the number of reams
being shipped. Finally, if we are shipping more than six reams we have to use
a large reinforced crate, with a total transportation cost that depends on the
number of reams being shipped and grows as a square root of that quantity plus
a small overhead of 0.5 units.

Given these preliminaries, we can construct a model of the problem:

minimize 37_; S5, fij(@iy),

subject to

3Note that discontinuities are quite typical for most real transportation cost functions.
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Z;?:I x; < sour(s), fori =1,2,...,n,
YRy x> dest(j), for j=1,2,...k,
z;;20,fori=1,2,...,nand 7 =1,2,...,k,

where sour is the source and dest is the destination. The constraints of the
problem define a feasible solution: no transport from any warehouse exceeds
the number of available reams in that warehouse, and the total transport to
any distribution center must satisfy its demand (i.e., the total transport is at
least equal to the number of ordered reams).

It might just be that this cost function describes the real-world situation
faithfully (i.e., exactly), neglecting the costs for the other aspects we mentioned
earlier such as the traffic density between the source and destination and so
forth. And we might be able to construct similar exact functions that describe
the costs of transporting the reams of paper from every warehouse to every
distribution center. Still, such a precise model of the problem might be of only
limited utility because these functions are too complex for many traditional op-
timization algorithms. For starters, they are discontinuous, and discontinuities
present severe problems. The results that we would obtain after using some
gradient-based methods on these functions would likely be quite poor [320].
Thus, we cannot derive a solution based on this model, so the model — as
perfect as it is — is useless for deciding what to do!

What options do we have? There are at least two ways to proceed:

1. We can try to simplify the model so that traditional optimizers might
return better answers.

2. We can keep the model as it is, and use a nontraditional approach to find
a near-optimum solution.

The first idea is quite tempting. For example, we can approrimate the func-
tion fo3 as follows:

fhs(z) = 2,66z + 8.25,

where z denotes the number of reams transported from 2 to 3 (figure 1.4 displays
the graph of the approximate function fj; together with the original fo3).

In this case, we simplified the transportation cost function fs3, and we can
perform similar simplifications for the other functions. Note that if all of the

;78 were linear, we’d obtain a linear model of the problem that can be solved

precisely by a linear programming method. But note that this exact solution
would then be a solution for the simplified model and not for the real problem!

The second option is to leave the precise model as it is — with all of its
discontinuities — and use a nontraditional method (e.g., simulated annealing
or an evolutionary algorithm) to find a near-optimal solution. A large volume
of experimental evidence shows that this latter approach can often be used to
practical advantage.

Let’s rephrase this discussion. There are two possible approaches. The first
uses an approximate model, Model,, of a problem, and then finds the precise
solution Solution,(Model,) for this approximate model:
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Fig. 1.4. An approximation of the transportation cost function (bold line) for a given source
and a given destination

Problem = Model, = Solution,(Model,).

The second approach uses a precise model, Model,, of the problem, and then
finds an approximate solution Solution,(Model,) for this precise model:

Problem = Model, = Solution,(Model,).

Of these two approaches, the latter one is often superior; i.e., Solution,(Model,)
is better than Solution,(Model,) as a solution of the original problem.

But either way, this is the second source of difficulties we face in problem
solving: it’s difficult to obtain a precise solution to a problem because we either
have to approximate a model or approximate the solution.

1.3 Change over time

As if the above concerns weren’t enough, real-world problems often present
another set of difficulties: they change. They change before you model them,
they change while you are deriving a solution, and they change after you execute
your solution. Let’s look at some of the sources of trouble.

Think back to the traveling salesman problem from figure 1.1. Suppose
you are the salesman and you are leaving your home at city 1 on your way
to city 6. You've driven this route before and you know the distance between
the two towns is, say, 20 miles. But do you know how long it will take you to
travel between the cities? Not precisely. You might figure that typically you can
average 30 miles per hour and so on average this trip will take 40 minutes. But
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what is the probability that 40 minutes will be the exact travel time today?
That’s very unlikely.

The travel time depends on many factors. For example, you might be lucky
and make all of the green traffic lights along the way. Or you might be unlucky
and not only hit the red lights but also get stuck behind a slow-moving truck.
Worse, you might get a flat tire, which would add a significant amount of time
to your trip. All of these possibilities, and an unimaginable number of other
outcomes including the weather, road conditions, traffic accidents, emergency
vehicles requiring you to pull aside, a train on tracks crossing your path, and
so forth, can be described under the heading of noise or randomness. You
can’t predict whether or not any of these events will happen before you leave.
All you might be able to know, or estimate, is the likelihood of each of the
anticipated events and the associated consequences to your travel time. But
you must acknowledge that you'll never be able to account for every possibility.

Suppose you decided to simply calculate the expected travel time based on
the probabilities of the known possible events and the effect they have on your
travel time. Let’s simplify things a little. Say there are only two possibilities for
your trip: (1) everything goes fine and you can travel to city 6 in 40 minutes, or
(2) you get stuck behind a slow vehicle and it takes you 60 minutes. Furthermore,
let’s say that these two events are equally likely. So the expected time for the
trip is 50 minutes. But note that neither of the two possibilities above takes
50 minutes. If you use 50 minutes as the approximate time you ensure using
a value that will never happen in reality. You can be 100 percent certain that
your value will be wrong. It might be easy to imagine that if you used a series
of these incorrect approximations to determine your travel time to each of the
cities in your route, compounding your errors between each city as you go, that
your final estimated time might be very different from any of the possible times
that it would really take. Any decision you make based on this average time
fails to take into account the variability of the time, and this can be much more
important in effecting good decisions.

Random chance isn’t the only source of change in real-world problems.
Sometimes there are purely deterministic troubles as well. You know, for ex-
ample, that travel at rush hour will be more time consuming in each city than
travel at midnight. You might not know exactly how much more time you’ll
spend — that’s a random event — but you know there is a bias that rush hour
will stall your progress in traffic. That bias is a regular, predictable pattern,
and you need to consider it or else your model might not correspond sufficiently
to reality, and your solutions with the model won’t be useful. In the worst case,
a particular route between two cities might be available only during certain
times of day, and not available otherwise (this often happens in cities where
city planners limit your options for turning into side streets at rush hour in
order to increase traffic flow). Acting as if the unavailable route were still an
option would lead to an infeasible solution, and that means no solution at all.

It’s also important to be sure that the model reflects current knowledge
about the problem. It might be that road improvements or a new freeway system




1.4 Constraints 21

between two of the cities on your list now allow for more rapid transit. If you fail
to update your model to account for this change, you’ll be deriving a solution
to a problem that no longer exists.

The situation, however, is even more complex than this. The above vagaries
might occur as a function of environmental changes or uncontrollable events,
but none of them were conspiring against you. Unfortunately, in the real world,
it’s often the case that other people are trying to defeat your solution, and this
requires you to continually update your model and anticipate other people’s
actions.

For example, suppose you are the owner of a major supermarket chain.
You need to decide where to place a new store, so you calculate the cost of
construction in each possible location, the demographics of the neighboring
areas, the existing competition, etc., formulate an evaluation function, which
would likely result in a nonlinear programming problem, and set out to decide
where the best place for the store is. But there’s more to the problem: as you
are deciding where to put your new store, your competition is anticipating your
choice of location, and they have their own new store to construct. They are
actively trying to figure out how best to place their new store so as to minimize
your success. If you only solve the problem of the best position for your store
given the current conditions, you are treating the situation as if it were a one-
player game. The real-world problem often changes while you are deriving a
solution, and sometimes it changes in ways that are designed to make your life
difficult.

1.4 Constraints

Unfortunately, things are often even worse than we’ve made it out so far because
real-world problems don’t offer you all of the possibilities that you might like
to have. Almost all practical problems pose constraints, and if you violate the
constraints you can’t implement your solution. Think back to the NLP from
section 1.1. There, we had a case where it wasn’t enough to find the maximum
of the function G2, we had to ensure that the solution we proposed was in
the feasible region bounded by the product and summation constraints (see
figure 1.2). Now at first you might think constraining problems like this would
make life easier — after all, we have a smaller search space to worry about
and therefore fewer possibilities to consider. That’s true, but remember that to
search for improved solutions we have to be able to move from one solution to
the next. We need operators that will act on feasible solutions and hopefully in
turn generate new feasible solutions that are an improvement over what we’ve
already found. It’s here where the geometry of the search space gets tricky.
For example, suppose we're faced with the problem of making a timetable
for all of the classes at a college in one semester. Think about what this entails.
First, we have to make a list of all the courses that will be offered. Next, we
need a list of all the students assigned to each class, and let’s not forget the
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professor assigned to each class too. Third, we need a list of available classrooms,
noting the size and other facilities that each offers (e.g., a white board, a video
projector, laboratory equipment, and so forth). So then, what are we trying to
accomplish? There are three hard constraints:

e Each class must be assigned to an available room that has enough seats
for every assigned student and has the requisite facilities for the type of
instruction (e.g., a chemistry lab must have beakers, Bunsen burners, the
appropriate chemicals, safeguards, etc.).

e Students who are enrolled in more than one class can’t have their classes
held at the same time on the same day.

e Professors can’t be assigned to teach courses that overlap in time.

We said those are the hard constraints. By that, we mean these are the
things that absolutely must be satisfied in order to have a feasible solution.
Moreover, with what we've presented so far, any assignment that meets the
constraints would solve our problem. So this means the task is quite similar to
the SAT problem: we have to find an assignment of classes (as compared with
Boolean variables) such that an overall evaluation function returns a value of
TRUE. Anything that violates the constraints means our evaluation function
returns a value of FALSE. But this alone doesn’t give us sufficient information
to guide the search for a feasible solution.

We might be able to employ some strategy that could provide this addi-
tional information. For example, we might judge the quality of the solution not
just by whether or not it satisfies the constraints, but for those assignments
that fail to meet the constraints, we could tally the number of times that the
constraints are violated (e.g., each time a student is assigned to two classes that
meet at the same time we increase the tally). This would give us a quantita-
tive measure of how poor our infeasible solutions were, and it might be useful
in guiding us toward successively better solutions, minimizing the number of
constraint violations. We could apply different operators for reassigning courses
to classrooms, professors to courses, and so forth, and over time we’d hope to
generate a solution that met the available constraints.

But then there are the soft constraints, the things we hope to accomplish
but aren’t mandatory. These include:

e Courses that meet twice a week should preferably be assigned to Mondays
and Wednesdays or Tuesdays and Thursdays. Having these courses meet
on consecutive days or with two or more days inbetween is not desired.

e Courses that meet three times per week should preferably be assigned to
Mondays, Wednesdays, and Fridays. Other assignments are not desired.

o Course times should be assigned so that students don’t have to take final
exams for multiple courses without any breaks in between (final exam
times are typically based on the time for the course).
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e If undergraduate prerequisite courses are scheduled for the same day as
their counterpart graduate courses, they should preferably be given earlier
than the graduate course (this facilitates learning foundational material
prior to advanced material in the same day).

e If more than one room satisfies the requirements for a course and is avail-
able at the designated time, the course should be assigned to the room
with the capacity that is closest to the class size (this means that large
auditoriums aren’t used for small classes, thus enhancing student partici-
pation).

Certainly we could imagine many more such soft constraints. Any assign-
ment that meets the hard constraints is feasible, but not necessarily optimal in
light of the soft constraints. Here is where the problem gets sticky. First, we have
to quantify each of the soft constraints into mathematical terms so that we can
evaluate any two candidate assignments and decide that one is better than the
other. Next, we have to be able to modify one feasible solution and, hopefully,
generate another feasible solution that better meets the soft constraints.

Let’s take the first issue: each soft constraint has to be quantified. Consid-
ering the first soft constraint, we could say that for each case where a solution
is feasible, we could count up the number of times twice-a-week courses be-
come separated by two or more days, or are placed on consecutive days, and
use this as a penalty term. The lower the term, the better the solution. In fact,
we could employ a similar approach to each of the soft constraints. But what
would we do when we’re through? We’d still need an overall method for consid-
ering the degree of violation of each of these constraints. That is, we’d have to
determine the answers to questions such as: which is worse, scheduling five stu-
dents to have back-to-back final exams, or scheduling back-to-back classrooms
at opposite ends of the campus? Each of these possible trade-offs would have
to be considered and quantified in some evaluation function, which poses quite
a challenge!

Of course it’s worse than that because even after all of these soft constraints
have been quantified, we are still left with the problem of searching for the best
assignment: the solution that is both feasible and minimizes our evaluation
function for the soft constraints. Suppose we have found a feasible solution, but
it doesn’t do very well with regard to the soft constraints. Say we apply some
variation operators to this solution and we significantly improve the situation
with respect to the soft constraints, but in so doing, we generate a solution that
violates one hard constraint. Now what? We might choose to discard the solution
since it’s infeasible, or we might see if we can repair it to generate a feasible
solution that still handles the soft constraints well. Either way, this is typically
a difficult chore. It would be even better to devise variation operators that
never corrupt a feasible solution into an infeasible solution while still searching
vigorously over the space of feasible solutions to find those that best handle the
soft constraints. That’s a nice aspiration, but it’s often not much more than
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wishful thinking. Effectively handling real-world constrained problems is one of
the most challenging tasks we face.

1.5 The problem of proving things

Although it seems a bit strange, in our quest to solve problems, we sometimes
make matters more difficult than they have to be. Having worked with students
at many universities and in many countries, we've experienced the phenomenon
that if you ask someone to find some solution to a problem, they’ll typically
find this much easier than if you had asked them to prove something about the
solution, even when the two tasks are exactly the same mathematically.

As an example, think about any mathematical problem with just a moderate
degree of difficulty. The task in the problem should be to find a particular value,
whether it’s the height of a building, the speed of a car, or the time to complete
your homework. Regardless, the task should be to find the value of z. For
example, you'll take four hours to fill a pool using a large pipe. You'll take six
hours if you use a small pipe. How long would it take if you used both pipes?
If the problem is formulated in terms of “find the value 7 — such as, find the
amount of time required to fill the pool using both pipes — this is a fairly easy
task. But, for some reason, if we change the task and instead ask: prove that the
amount of time required to fill the pool using both pipes is less than a, fewer
students will manage this problem despite the fact that it’s not the slightest bit
more difficult. If you can find the time required to fill the pool, and if it’s smaller
than a constant a, then the proof is completed. To verify this for yourself, take
the values given above for the times required to fill the pool using either pipe
alone and test it out on your friends. Ask some to find the time required when
using both pipes, and ask others to prove that the time required is less than 2
hours and 25 minutes.

We believe that the reason for this aversion to proving things is that most
people simply aren’t experienced in proving things and don’t know how to begin.
Generalizing on this observation, many problems are apparently difficult simply
because of the difficulty encountered when facing the question: “How should I
start?”

Here’s an example to help you exercise your ability to frame problems and
get started on their solution:

Prove that any polyhedron must have at least two faces with the
same number of edges.

No doubt, the first inclination when reading this is to think “Do I have to?”
Yes, you do. So let’s get started.

First, it’s helpful to remind ourselves of some basic ideas about proving
things. One way to prove something is simply to show that the conclusion

4Actually, the required time is 2 hours and 24 minutes.
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follows directly from the given knowledge. For example, suppose that a > b and
b > ¢, then prove that a > ¢. You simply cite the transitive law and you’re
done. Another way to prove something is to consider the contrapositive. Recall
that “if p then ¢” is logically equivalent to “if not ¢ then not p.” Sometimes it
might be easier to prove this relationship. Still another way to prove something
is to assume that the condition you are trying to prove is false and then show
that this is impossible. This is called proof by contradiction. Let’s try that here.

Restating our problem, then, we need a proof that shows it’s impossible
to construct a polyhedron such that all of the faces have a different number
of edges. The problem seems difficult because there aren’t that many general
theorems about polyhedrons. There is a famous one — Euler’s theorem — which
states that the following formula holds for every polyhedron:

v+ f=e+2
where v, e, and f represent the number of vertices, edges, and faces of the
polyhedron, respectively. But just how we might actually use this theorem in
proving that all of the faces must have a different number of edges isn’t very
clear.

The initial step is the hardest part of the puzzle. Indeed, here the problem
doesn’t provide us with any convenient starting point. There’s no number in the
problem, nothing for us to factorize, divide by two, multiply by six, or anything
else. In situations like this, it’s often advantageous to introduce such a number
ourselves: Let’s consider a polyhedron with f faces. Now we have something, a
variable, to work with.

We have to prove something about the edges of faces for this polyhedron.
Each face has a number of edges. To say something about these numbers, it
would be nice at least to know the range of values that we might expect. So,
let’s ask the question: what is the minimum number of edges that a face may
have? The answer is three, and in that case the face is a triangle. This minimum
number is independent of the total number f of faces of the polyhedron.

And what is the maximum number of edges a face may have? Well, each
edge belongs to precisely two faces, so if we have a face with six edges, we
know that the face is part of a polyhedron with at least seven faces (the current
face plus six new faces, one for each edge; see figure 1.5). Thus, any face of a
polyhedron that has f faces in total can’t have more than f — 1 edges, since a
new face originates from each edge.

This concludes the proof.

If this fact surprises you then take note that you have lost sight of what you
are trying to prove. Go back and remind yourself of the problem. The reason the
proof is complete is because if there are f faces in total, and if each face must
have a number of edges between 3 and f—1, then some repetitions in the number
of edges must occur across the f faces. There are more faces than possibilities
for the number of edges, so you’ll have to use some of these numbers more than
once. Therefore, at least two faces will have the same number of edges.

The keys to solving this problem were to invent a starting point to pursue
and not lose sight of the goal.
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Fig. 1.5. A single face of a polyhedron with six edges

1.6 Your chance for glory

Now that you're primed for solving a problem, here’s your chance to prove you
can do it. This problem was offered to us by Peter Ross of the University of
Edinburgh.

Mr. Smith and his wife invited four other couples for a party. When
everyone arrived, some of the people in the room shook hands with
some of the others. Of course, nobody shook hands with their spouse
and nobody shook hands with the same person twice.

After that, Mr. Smith asked everyone how many times they shook
someone’s hand. He received different answers from everybody.

How many times did Mrs. Smith shake someone’s hand?

We encourage you to put the book aside and try to frame this problem for
yourself. Try to think of a starting point, maybe a graphical image that describes
the problem, and see if you can follow it through to a successful conclusion.

The reason that this problem is a challenge is that once again there's no
obvious starting point, but it’s really quite simple to develop a graphical model
for the problem (see figure 1.6).

This is a good model because we can clearly see Mr. Smith (shaded circle)
and the remaining nine people (including his wife). Now, what information do we
have? (Remember, think about all the given information.) The only information
provided in this problem is that Mr. Smith asked every person in the room how
many times they shook someone’s hand, and that all of the answers he received
were different.

What answers did he get then? Well, the minimum number of handshakes
is zero: it’s possible that some antisocial person didn’t shake anyone’s hand at
all. But what is the maximum number of handshakes for a single person? It
is more difficult to think of asking this question than it is to answer it. The
maximum number of handshakes for a person is eight, as there are ten people
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Mr. Smith

Fig.1.6. Mr. Smith and the other people

in the room, and a person can’t shake hands with himself or herself nor with
his or her spouse.

Let’s collect the facts we have now. Mr. Smith asked the question to nine
people in the room and all of the answers were different. Furthermore, each
answer was a number between zero and eight. Therefore, the answers he received
were zero, one, two, three, four, five, six, seven, and eight (not necessarily in
that order, of course!). So, we can update our model accordingly (figure 1.7).

0o O OF
®

Mr. Smith

Fig. 1.7. Mr. Smith and the other people. The number of handshakes is indicated for each
person (except Mr. Smith).

What's the next step, then? What can we infer? It seems, not much. We've
already taken advantage of the fact that all of the answers were different, and
we now know all of these answers. But how many times did Mrs. Smith shake
hands? And which of the people in figure 1.7 is Mrs. Smith, anyway? If we only
knew who has shaken hands with whom, then everything would be easier.
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But, can’t we? Let’s try to draw all of the handshakes that were exchanged.
The person 8 (we’ll name everyone except Mr. Smith by the number of hand-
shakes they exchanged) shook hands eight times, i.e., with everyone else in the
room except himself or herself and his or her spouse. We can do two things
based on this observation. We can draw all of the handshakes made by person 8
(see figure 1.8) and we can also conclude that the spouse of person 8 is person

0.

Mr. Smith

Fig.1.8. Mr. Smith and the other people. Each handshake from person 8 is indicated.

Did the proverbial light bulb just turn on? We can turn our attention to
person 7. This person exchanged seven handshakes, i.e., with everyone in the
room except himself or herself, his or her spouse, and the spouse of person 8.
Again, we can add all of the handshakes made by person 7 to our model (see
figure 1.9) and we can also conclude that the spouse of person 7 is person 1.

Mr. Smith

Fig.1.9. Mr. Smith and the other people. All of the handshakes from persons 8 and 7 are
indicated.
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We can repeat this reasoning for persons 6 and 5. After adding the lines
that correspond to the handshakes they exchanged we find an interesting graph
shown in figure 1.10. The immediate conclusions are:

e The spouse of person 6 is person 2.
e The spouse of person 5 is person 3.

Using these conclusions, we know that the spouse of Mr. Smith is person 4.
Therefore, Mrs. Smith exchanged four handshakes.

Mr. Smith

Fig.1.10. Mr. Smith and the other people. All of the handshakes are indicated.

How did you do?

1.7 Summary

Problem solving is difficult for several reasons:
e Complex problems often pose an enormous number of possible solutions.

e To get any sort of solution at all, we often have to introduce simplifica-
tions that make the problem tractable. As a result, the solutions that we
generate may not be very valuable.

e The conditions of the problem change over time and might even involve
other people who want you to fail.

e Real-world problems often have constraints that require special operations
to generate feasible solutions.

Furthermore, problem solving is often more difficult than it needs to be
because we are threatened by the idea of proving things.
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e Don't let the word prove intimidate you.

e Think about different ways to prove the solution. Sometimes it’s useful to
assume that what you are trying to prove is false, and then show that the
false condition is impossible.

e Be ready to take a first step even if there doesn’t seem to be anything in
the problem for you to step on. Invent something, a variable, that describes
a facet of the problem and see if that helps. Don’t worry if you have to
start over a few times before you finally find a path that takes you to the
answer.

One way to facilitate taking the first step is to understand the search space:
what are the variables? What are their possible values? What are the con-
straints? Most of all:

e Don't lose sight of the goal!

If you forget what you are trying to prove, you may as well watch television
because your success rate will be the same either way: zero! Stay focused on
the end result. Always ask yourself if what you are doing facilitates getting to
where you want to go. You may not know the answer with certainty, but keep
asking yourself this anyway. At least, you'll more quickly identify those paths
that don’t lead to the goal and you’ll minimize the time spent on dead ends.
At most, you'll readily identify the right path to choose and be on your way!




